当前位置:文档之家› 大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球 题3-6图v v mmωOOR系统的 守恒。

答案:角动量; 机械能3-7 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0ω。

设它所受的阻力矩与其角速度成正比,即ωk M -=(k 为正常数)。

求圆盘的角速度从0ω变为012ω时所需的时间t = 。

答案: ln 2Jk3-8 一质量为m 的质点位于(11,y x )处,速度为x y =+i j v v v , 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩. 解: 由题知,质点的位矢为11x i y j =+r作用在质点上的力为i f f -=所以,质点对原点的角动量为v m r L ⨯=011()()x y x i y j m v i v j =+⨯+k mv y mv x x y)(11-=作用在质点上的力的力矩为k f y i f j y i x f r M1110)()(=-⨯+=⨯=3-9 如题3-9图所示,一轴承光滑的定滑轮,质量为M =2.00kg ,半径为R =0.100m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00kg 的物体,如图所示.已知定滑轮的转动惯量为J =MR 2/2,其初角速度ω0=10.0rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到ω=0时,物体上升的高度; 题3-9图 (3) 当物体回到原来位置时,定滑轮的角速度的大小和方向. 解:(1) ∵mg -T =maαI TR =a R α=∴α= mgR / (mR 2+J )()R M m mg MR mR mgR +=+=222122=81.7 rad/s 2 方向垂直纸面向外.(2) ∵αθωω2202-=当ω=0 时,rad 612.0220==αωθ物体上升的高度h = R θ = 6.12×10-2 m.(3)==αθω210.0 rad/s3-10 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题3-10图所示.设R =0.20m, r =0.10m ,m =4kg ,M =10 kg ,1m =2m =2 kg ,且开始时1m ,2m 离地均为h =2m .求: 题3-10 图(1)柱体转动时的角加速度; (2)两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b). (1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,, 而 222121mr MR I += 由上式求得22222222121s rad 13.68.910.0220.0210.042120.0102121.022.0-⋅=⨯⨯+⨯+⨯⨯+⨯⨯⨯-⨯=++-=g rm R m I rm Rm β(2)由①式8.208.9213.610.02222=⨯+⨯⨯=+=g m r m T βN由②式1.1713.6.2.028.92111=⨯⨯-⨯=-=βR m g m T N3-11 如题3-11图所示,滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设150kg m =,2200kg m =,15kg M =,0.1m r =。

计算系统中物体的加速度.题3-11(a)图 题3-6(b)图解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④ 联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a3-12 一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下,如题3-12图所示.求:(1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有211()23mg l ml β=∴ lg23=β 题3-12图(2)由机械能守恒定律,有22)31(21sin 2ωθml l mg= ∴ lg θωsin 3=3-13 物体质量为3kg ,t =0时位于4m =r i , 16m s -=+⋅v i j ,如一恒力5N =f j 作用在物体上,求3秒后,(1)物体动量的变化;(2)相对z 轴角动量的变化.解: (1) ⎰⎰-⋅⋅===∆301s m kg 15d 5d j t j t f p(2)解(一) 73400=+=+=t v x x xj at t v y y 5.25335213621220=⨯⨯+⨯=+= 即 i r41=,j i r 5.2572+=10==x x v v1133560=⨯+=+=at v v y y即 j i v611+=,j i v 112+=∴ k j i i v m r L72)6(34111=+⨯=⨯=k j i j i v m r L5.154)11(3)5.257(222=+⨯+=⨯=∴ 1212s m kg 5.82-⋅⋅=-=∆k L L L解(二) ∵dtdz M =∴ ⎰⎰⨯=⋅=∆t t t F r t M L 0d )(d⎰⎰-⋅⋅=+=⨯⎥⎦⎤⎢⎣⎡⨯+++=31302s m kg 5.82d )4(5d 5)35)216()4(2k t k t t j j t t i t3-14 如题3-14图,质量为m ,长为l 的均匀细棒,可绕过其一端的水平轴O 转动.现将棒拉到水平位置(OA ′)后放手,棒下摆到竖直位置(OA )时,与静止放置在水平面A 处的质量为M 的物块作完全弹性碰撞,物体在水平面上向右滑行了一段距离s 后停止.设物体与水平面间的摩擦系数μ处处相同,求μ.解:(1)棒由水平位置下摆至竖直位置但尚未与物块相碰.此过程机械能守恒.以棒、地球为一系统,以棒的重心在竖直位置时为重力势能零点,则有22211226l mgJ ml ωω== (2)棒与物块作完全弹性碰撞,此过程角动量守恒(动量不守恒)和机械能守恒,设碰撞后棒的角速度为'ω,物块速度为v ,则有221133ml ml lMv ωω'=+ 222221111123232ml ml Mv ωω'⨯=⨯+(3)碰撞后物块在水平面滑行,满足动能定理2102mgs Mv μ-=-联立以上四式,可解得:226m (m 3M)slμ=+题3-14图 题3-15图3-15 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 (可看作匀质圆盘),在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,如题3-15图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. (1)问它能升高多少?(2)求余下部分的角速度、角动量和转动动能. 解: (1)碎片离盘瞬时的线速度即是它上升的初速度ωR v =0设碎片上升高度h 时的速度为v ,则有gh v v 2202-=令0=v ,可求出上升最大高度为2220212ωR gg v H ==(2)圆盘的转动惯量221MR I =,碎片抛出后圆盘的转动惯量2221mR MR I -=',碎片脱离前,盘的角动量为ωI ,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即R mv I I 0+''=ωω式中ω'为破盘的角速度.于是R mv mR MR MR 0222)21(21+'-=ωω ωω'-=-)21()21(2222mR MR mR MR 得ωω=' (角速度不变)圆盘余下部分的角动量为ω)21(22mR MR - 转动动能为 222)21(21ωmR MR E k -=3-16 如题3-16图所示,有一质量为1m 、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为2m 的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v ,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间。

相关主题