数值分析读后感
M060112101 刘洪兰
研究生生活的第一个半年快要结束了,回想一下这半年是个学习基础知识的忙碌的半年,作为基础课程,我自认为数值分析是最重要的一门课程,不论是理论分析还是实际应用它都有无可替代的作用,原来很多无法解决的实际问题,学了数值分析之后才感觉找到了另一个灵巧而又准确的解决方法,现在就我这半年对数值分析的学习简单的谈一下感想。
数值分析插值法的引入,帮我们解决了已知一些函数点求一些在这些已知点附近的未知点的问题,他能构造出一个能很好拟合这些已知点性质的函数,并且能根据精度的要求做出灵活的构造,使计算变得更加精确更加简单。
当函数只在有限点集上给定函数值,要求在包含该点集的区间内用公式给出函数的表达式,这一类的问题是函数逼近问题,最佳二次逼近和最小二乘法分别从连续和离散的角度用相对简单的表达式对复杂的函数做出了很好的逼近。
在一些数值积分求法复杂的时候,数值分析提供的梯形公式和辛普森公式用一些特殊点的和对积分作出估计,是原来无法运算的积分问题获得很好的解答,另外还有更精确的复合中点公式、复合梯形公式、复合辛普森公式,当然还有已正交基为基底的对一些问题更加精确的高斯公式。
在一些实际问题的线性方程的求解中,未知数个数有时候会很多,而且零元素也较多时,普通的求解方法就显得不适用了,在这个时候,用迭代法求解便成了最佳的选择。
数值分析给我们三种常用的迭代方法:雅克比迭代、高斯赛德尔迭代和超松弛迭代,每一种都是很好地解决方法。
在非线性方程与方程组的数值求解问题中,有方法简单但计算步数相对比较多的二分法和不动点迭代求法,也有应用更加广泛的牛顿法和弦截法,使原本复杂的非线性问题变得相对非常简单。
矩阵特征值的计算问题,用乘幂法求最大特征值和特征向量,用反幂法求最小特征值和特征向量,用幂方法还可以求出接近数值p的特征值和特征向量,给我们一个全新的求解特征值和特征向量的方法。
最后的欧拉法,梯形法,改进的欧拉法,还有经典的标准四阶龙格库塔方法都是用于常微分方程初值问题的数值解法。
除了以上这些具体的数值解法之外,数值分析还给出了我们很多关于误差估计的概念,这在实际问题中很重要,因为实际问题都会有一定的精度要求,我感觉这也是我学习数值分析之后的一个很大的收获,对误差有了一个比之前更加系统的了解,也认识到误差在解决实际问题中的影响。
总之,经过一学期对数值分析的学习,我感觉收获很多,不仅使自己解决问题的思路得到开拓,也培养了自己严谨的思维习惯,但是,同时我也感觉还有数值分析的一些方法自己没能完全理解,我相信自己对数值分析的学习不会随着考试的结束而结束的,在以后的学习中,我还要继续深化对它的学习,最后谢谢老师这学期对我们细心又耐心的数值讲解,在您的帮助下我才能学到这么多东西,谢谢老师。
这就是我这学期对数值分析学习后的感想。