当前位置:文档之家› 2018全国高中数学联赛模拟试题1及参考答案

2018全国高中数学联赛模拟试题1及参考答案

⎫ ⎩ ⎭⎪ + 2高中联赛模拟试题 1一试部分考试时间:80 分钟满分:120 分一、填空题(每小题 8 分,共 64 分)1. 设集合 A = {x -2 ≤ x < 5}, B = ⎧x 3a > 1.若 A B ≠∅ ,则实数 a 的取值范围是 .⎨ x - 2a ⎬2. 已知甲、乙两只盒子中装有相同规格的乒乓球,其中,甲盒中有三个白球和三个红球,乙盒中仅有三 个白球.若从甲盒中任取三个放入乙盒中,则从乙盒中任取一个是红球的概率是.2 c os 2 ⎛ 1 x - 1 ⎫- x3. 函数 f ( x )= ⎝ 2 2 ⎭ 的对称中心的坐标为 .x - 1V + V 4. 已知四棱锥 S - ABCD 的底面 ABCD 是平行四边形,O 是四棱锥内任意一点.则 四面体OSAB 四面体OSCD=V 四面体OSBC + V 四面体OSDA.5. 在椭圆 x2= 1(a > b > 0) 中,记右顶点、上顶点、右焦点分别为 A , B , F .若 ∠AFB = ∠BAF + 90 , a b则椭圆的离心率为 .6. 平面上 n 个三角形最多把平面分成部分.sin2π ⋅ sin 8π7. 计算:15 15= .cos π⋅ cos 2π ⋅ cos 4π 5558. 设复数 α, β ,γ , z 满足 α + β + γ = αβ + βγ + γα = αβγ = 1.则 α - z + β - z + γ - z 的最小值为.2y 2BB 1CC 1 ( )二、解答题(第 9 小题 16 分,第 10、11 小题 20 分,共 56 分)9. 已知动直线 l 过定点 A (2, 0) 且与抛物线 y = x 2 + 2 交于不同的两点B ,C .设 B , C 在 x 轴上的射影分别 PB 为 B 1 ,C 1 . P 为线段 BC 上的点,且满足PC= ,求 ∆POA 的重心的轨迹方程.10. 设 f ( x ) = sin x .已知当 x ∈[0,π ]时,有 sin x + 1 ≥ 2x + cos x .π证明: f ⎛ π ⎫ + f ⎛ 2π ⎫ + + f ⎛ (n + 1)π ⎫ ≥ 3 2 (n + 1) . 2n + 1⎪2n + 1⎪2n + 1 ⎪ 4(2n + 1) ⎝ ⎭ ⎝ ⎭ ⎝ ⎭p11. 已知 p 为大于 3 的素数.求 ∏ k 2 + k + 1 除以 p 的余数.k =1高中联赛模拟试题 1加试部分考试时间:150 分钟满分:180 分一、(本题满分 40 分)已知a, b, c∈,且3 9a + 3 3b + c = 0 .证明:a = b = c = 0二、(本题满分 40分)a2b2 b2c2 c2 a2 3( 3 -1)已知正实数a, b, c满足a2 + b2 + c2 = 1.证明:++≥.abc + c4abc + a4abc + b4 2三、(本题满分 50 分)已知圆Γ 内有两定点A 、B ,过A 作一动弦CD ,延长CB 、DB ,与圆Γ 分别交于点E 、F .证明:弦EF 通过一个与C 、D 无关的定点.四、(本题满分 50 分)在80 座城市之间执行如下两种方式的飞行航线:(1)任意一座城市至少与七座城市有直航;(2)任意两座城市可以通过有限次直航来连接.求最小的正整数n ,使得无论如何安排满足条件的航线,任意一座城市到其他城市均最多可以经过n 次直航到达.C3 3高中联赛模拟试题 1解答一试部分考试时间:80 分钟满分:120 分一、填空题(每小题 8 分,共 64 分)1. 0 < a < 5或 -1 < a < 0 .2解析:由题意可知 B = {x 2a < x < 5a , a > 0}⋃{x 5a < x < 2a , a < 0}. 又因为 A ⋂ B ≠ ∅ , ⇒ 0 < 2a < 5或 - 2 < 2a < 0 .2.1. 4C k C 3-k解析:由题设知乙盒中红球个数的可能值 ξ =0,1,2,3 .故 P (ξ = k ) = 3 3(k = 0,1, 2,3).从而得出6P ( A ) = ∑P (ξ = k )P ( A ξ = k ) = 1.k =04 3.(1, -1) .解析:由题设知 f ( x ) = cos ( x -1) - 1 .因为 g ( x ) = cos x为奇函数,其对称中心为 (0, 0) ,故 f ( x ) 的对称中心为 (1, -1) .x -1 x4. 1.解析:延长 SO 与底面 ABCD 交于点 X .由底面 ABCD 是平行四边形,⇒ S ∆XAB + S ∆XCD = S ∆XBC + S ∆XDA ⇒ V 四面体OSAB + V 四面体OSCD = V 四面体OSBC + V 四面体OSDA5. 5 -1 .2解析:设左焦点为 F '.则由 ∠AFB = ∠BAF + 90⇒ ∠AF ' B + ∠BAF ' = 90⇒ AB ⊥ BF ' .又 AB 2= a 2 + b 2 , BF ' 2= a 2 , AF ' 2= (a + c )2.由勾股定理知 a 2 + b 2 + a 2 = (a + c )2,由此, ⇒ c = 5 - 1 .a 26. 3n2 - 3n + 2 .解析:设n 个三角形最多把平面分成Sn 个部分.S1= 2 .因为任意一个三角形与另一个三角形至多有6 个交点,这些交点将该三角形的周长分成至多6(n - 1)1 12 2 0 0⎨ BB 1 CC 1 AB 1 AC 1 1 , 段,每一段将其所在平面一分为二,增加了 6(n - 1) 个部分.从而 S n - S n -1 = 6(n - 1)(n ≥ 2) .7.-2 . 解析:sin 2π ⋅ sin 8π8sin πsin 2π sin 8π4sinπ ⎛cos 2π - cos 2π ⎫2⎛sin 3π - sin π ⎫ + 2sin π 15 155155 53 ⎪5 5 ⎪ 5 cos π⋅ cos 2π⋅ cos 4π ==cos 8π⎝⎭ = cos 8π⎝⎭ .sin 8π5 5 55558..解析:注意到 α, β ,γ 为一元三次方程 x 3 - x 2 + x -1 = 0 的根,从而可令α = i , β = -i ,γ = 1.在复平面上,⎫令 α, β ,γ 分别对应于点 A (0,1), B (0, -1),C (1, 0) .当 z 取到 ∆ABC 的费马点,0⎪ 时取值最小. ⎪ ⎝⎭二、解答题(第 9 小题 16 分,第 10、11 小题 20 分,共 56 分) 9. 当 l ⊥ x 轴时,直线 l 与抛物线不可能有两个交点. 故设直线l : y = k ( x - 2). 与抛物线的方程联立得: x 2 - kx + 2k + 2 = 0 .(1) 由 ∆ > 0 ⇒ k > 4 + 2 6或k < 4 .(2)设 B ( x , y ),C ( x , y ), P ( x , y ) .则 ⎧x 1 + x 2 = k , (3)令 λ = CP= = = 2 - x 1 2 - x 2⎩x 1 x 2 = 2k + 2.(4)⎧ ⎪⎪x = 设重心 G ( x , y ) .则 ⎨ (2 + x 0 ), 3 .将式(2),(3),(4)代入,并注意到 y = k ( x- 2)得: 0 0⎪ y = y .⎪⎩ 3 0⎧x = 4 - 4k ⎪⎪ 3(4 - k ) ⎨⇒ 12x - 3y - 4 = 0 .从而得 k = 4 y ,代入(2)式得: 1⎝ ⎭ ⎪ y = ⎪⎩-4k 4 - k y - 44y < 4 或 4 <y <4 G 的轨迹方程为:3 3⎛ 12x - 3y - 4 = 0 4 -< y < 4或4 < y < 4 . 3 3 ⎪- ,故⎝ ⎭3 ( ) ( ) 10. 由已知条件 ⇒ sin x - cos x ≥ 2x -1 ⇒2 sin ⎛ x - π ⎫ ≥ 2x -1 .又当1 ≤ k ≤ n + 1时,0 ≤ k π + π ≤ π .π4 ⎪ π 2n +1 4 ⎝ ⎭而 2 sin k π ≥ 2 ⎛ k π + π ⎫ -1 = 2k 12n + 1 π 2n +1 4 ⎪ 2n +1 2⎡ ⎛ π ⎫ ⎛ 2π ⎫ ⎛ (n + 1)π ⎫⎤ n +1⎛ 2k 1 ⎫ 3(n + 1)2 ⎢ f ⎪ + f ⎪ + + f⎪⎥ ≥ ∑ - ⎪ =⎢⎣ ⎝ 2n + 1 ⎭ ⎝ 2n + 1 ⎭⎝ 2n + 1 ⎭⎥⎦k =1⎝ 2n + 1 2 ⎭ 2(2n +1)⎛ π ⎫⎛ 2π ⎫⎛ (n + 1)π ⎫ 3 2 (n + 1) f ⎪ + f ⎪ + + f⎪ ≥ . ⎝ 2n + 1⎭ ⎝ 2n + 1⎭ ⎝ 2n + 1 ⎭ 4(2n +1)11. 注意到 k ≠ 1时, k 2 + k + 1 = k -1.而当 k 取遍 2,3, , p 时,分母 k -1 取遍1, 2, , p -1.k -1由费马小定理, x p -1 ≡ 1(mod p ) 在1 ≤ x ≤ p 恰有 p -1 个解.(1)当 p ≡ 1(mod3 )时, x 3 -1 为 x p -1 -1 的因子,于是 x 3 -1 ≡ 0(mod p )在1 ≤ x ≤ p 内恰有三个解.于 是当 k 取遍 2,3, , p 时,分子 k 3 -1 中恰有两项为 p 的倍数,而分母不含 p 的因子. p故 ∏ k 2 + k + 1 ≡ 0(mod p ) .k =1(2)当 p ≡ 2(mod 3)时,3 与 p -1 互素,于是存在整数 a ,b 使得 3a + ( p - 1)b = 1. 假设有一个 2 ≤ k ≤ p 满足 k 3 ≡ 1(mod p ) .由费马小定理得 k ≡ k 3a +( p -1)b ≡ 1(mod p ),矛盾. 因此, x 3 -1 ≡ 0(mod p )只有 x ≡ 1(mod p ) 这一个解.故当 k 取遍1, 2, , p 时, k 3 除以 p 的余数两两不同,正好也取遍1, 2, , p .从而当 k 取遍 2,3, , p 时, k 3 -1 除以 p 的余数取遍1, 2, , p -1.p3p p3故 ∏ k -1 ≡ 1(mod p ) ⇒ ∏ (k 2 + k + 1) ≡ 3 ∏ k -1 ≡ 3(mod p ) .k =2 k -1 k =1 k =2 k -1p综上, ∏ k 2 + k + 1 除以 p 的余数为 0 或 3.k =1(( ) ( ) ( )) ( )t1一、(本题满分 40 分)加试部分考试时间:150 分钟满分:180 分为无理数,且若 a , b , c 中有一个为 0,则其余两个也为0. 下面假设 a , b , c 均不为 0.易证明:若 a , b , c 均为非 0 b + c = 0 ;(1)d ,e ,f 均为非 0 e + f = 0 ,则 a = b = c .d e f(1 c + 3a = 0 ;(1 c + + 3b= 0 . 于是, b = c = 3a= k .(2)c 3a 3b由 a , b , c 均为非 0 有理数知其中必有两个同号.结合(2)式,知 a , b , c 同号.从而(1)式左边不为 0,矛盾. ⇒ a = b = c = 0 .二、(本题满分 40 分)x 2 y 2 z 2令 a 2= yz ,b 2= zx , c 2= xy .则 xy + yz + zx = 1.原式左边 = + + x + yz y + zx z + xy.由柯西不等式得:⎛ x 2y 2 z 2 ⎫ 2+ + ⎪x + yz + y + zx + z + xy ≥ x + y + z ⎝ x + yz y + zx z + xy ⎭x 2y2z 2( x + y + z )2( x + y + z )2⇒+ + ≥ = x + yz y + zx z + xy x + y + z + ( yz + zx + xy ) . x + y + z + 1由 ( x + y + z )2≥ 3( x y + yz + zx ) ⇒ x + y + z ≥t = x + y + z2 因为 f (t ) = = (t + 1) + - 2 +∞) 上单调递增,所以:t + 1 t + 1 331)原式左边 ≥ f (t ) =.2三、(本题满分 50 分)连结 AB 并延长与圆 Γ 交于点 G , H ,与弦 EF 交于点 P . 设 ∠ECD = ∠EFD = α,∠CDF = ∠CEF = β .由S∆ABC ⋅S∆PBF ⋅S∆ABD ⋅S∆PBE = 1 ,得AC ⋅ BC sin α ⋅ PB ⋅ FB ⋅ AD ⋅ BD sin β ⋅ PB ⋅ EB = 1.S∆PBF S∆ABDS∆PBES∆ABCPF ⋅ BF sinα AB ⋅ DB PE ⋅ BE sin β AB ⋅ C B整理得PB2 ⋅ AC ⋅ AD = AB2 ⋅ PE ⋅ PF .在圆Γ 中,由相交弦定理得:PB2 ⋅ AG ⋅ AH = AB2 ⋅ PG ⋅ PH .(1)设AB = a, PB = b, BG = c > a, BH = d > b ,其中,a, c, d 为常数,b 未定.则(1)式 ⇔ b 2 (c - a )(d + a ) = a 2 (d - b )(c + b ) .整理得 ((c - a )d + ac )b 2 + a 2 (c - d )b - a 2cd = 0 .该二次方程的二次项系数与常数项符号相反,因此有且仅有一个正数解.故 b 是定值.即 BP 是定值. 从而无论 C , D 如何选取, EF 总是与 AB 交于一个固定点 P .四、(本题满分 50 分)n 的最小值为 27. 若两座城市可以通过有限次直航来连接,称这两个城市”通航”. 首先证明: n ≤ 27 .反证法:若 n ≥ 28 ,不妨设有两座城市 A 1 到 A 29 间至少经过 28 次到达.设城市 A 1 到 A 29 的一个最短连 接路线为 A 1 → A 2 → → A 29 .因为每一座城市至少和七座城市通航,所以, A 1 , A 29 与除去 A 2A 28 以外的至少六座城市通航,城市A 2 A 28 与除去 A 1 A 29 以外的至少五座城市通航. 设 A = {A 1 , A 2 , , A 29 } .设分别与城市 A 1 , A 4 , A 7 , A 10 , A 13 , A 16 , A 19 , A 22 , A 25 , A 29 通航,且不属于 A 的所有城市 组成的集合为 X i (i = 0,1, , 9).易知, X 0≥ 6, X 9 ≥ 6, X i ≥ 5(i = 1, 2, ,8). 又 X i ⋂ X j = ∅(i ≠ j ) ,否则,城市 A 1 , A 29 之间有更短的连接路线.故 A ⋃ ( X 0 ⋃ X 1 ⋃ ⋃ X 9 ) ≥ 29 + 6 ⨯ 2 + 5 ⨯ 8 = 81 > 80 ,矛盾.从而 n≤ 27 . 其次证明: n = 27 是可以的.事实上,取 28 座城市 A 1 , A 2 , , A 28 与城市集合 X i (i = 0,1, , 9).当 i = 0, 9 时, X i= 6 ;当 i = 1, 2, ,8 时, X i= 5 ,且对于 0 ≤ i < j ≤ 9 , X i ⋂ X j = ∅ , X i 中不包含城市 A 1 , A 2 , , A 28 . 对于1 ≤ k ≤ 8 ,城市 A 3k , A 3k +1 , A 3k +2 与集合 X k 中所有的城市通航;城市 A 1 , A 2 与集合 X 0 中所有的城市通航;城市 A 27 , A 28 与集合 X 9 中所有城市通航;集合 X i (0 ≤ i ≤ 9)中任意一座城市与上述的城市 A s 通航, 与且仅与集合 X i 中其余城市通航;城市 A i 与 A i +1 (i = 1, 2, , 27) 通航.这样,城市A 1A 28 至少与七座城市通航,集合 X i 中任意一座城市均只与七座城市通航,且城市 A 1 A 28 至少经过 27 次直航来连接.因此, n = 27 .。

相关主题