风电机组的可靠性分析
摘要:随着清洁能源、绿色电网等理念的不断渗透,风力发电已经成为智能
电网建设的新方向。
然而,我国大型风电技术刚刚起步,风电场所联电网多为弱
电网,因发电机组故障而引起的停机将对电网造成极大的影响。
因此,从电网安
全角度考虑,要求风电机组应能在电网正常和故障下均能持续运行而不退出电网,同时考虑到可靠性和运行效率、维护成本,对机组的容错能力也提出了很高的要求。
关键词:风电机组;关键部件;可靠性评估;维护
引言
近年来,风力发电在国内外得到了迅猛的发展,预计到2020年,我国风电
总装机容量将超过2亿千瓦,其中海上风电装机容量达到3000万千瓦,风电年
发电量达到3900亿千瓦时,风电发电量在全国发电量中的比重超过5%[1-2]。
风
力发电的安全性、可靠性和稳定性与风电机组性能质量息息相关。
尤其是在风电
机组关键部件运行过程中,长期处于潮湿、风沙、震动等环境中,很容易导致部
件损坏,严重时甚至引起风力发电故障,造成巨大经济损失或人身伤亡。
为做好
风电机组关键部件的性能评估和运维保护,在工作中需利用算法模型、运行数据
等全面分析其可靠性系数,按照风险类型对症下药,防患于未然。
1.风电机组常见故障的概述
我国地大物博,但是由于风电机组的特殊性,我国的风电
机组多位于西北的干旱荒漠地区或高山、近海地区,这样的恶劣环境就为风电机
组的正常运行提供了严峻的考验,风沙的侵蚀,高温的曝晒,以及严寒的冷冻等
各种不利的环境对风电机组的运行都会带来负面的影响,而且,在有的时段,当
风电机组运行时间相对过长时,都会在一定程度上导致风电机组故障率的增加。
在这种局面下,风电机组上都安装了数据采集和预警雷达
系统,即SCADA系统,如果风电机组确实出现了故障,主控室就会受到出现故障
的警报,并且系统也会告知具体的故障范围,如果风电机组出现的故障距离主控
室较近,这样就可以第一时间到达现场进行抢修,可是,如果故障地点距离主控
室较远,这对于故障的检修就带来了一定的麻烦甚至带来严重的后果,因为当风
电机组长期处于故障状态时,不仅影响了风电机组的平稳运行,而且较为严重的是,这会在一定程度上消耗风电机组的发电量,从而带来严重的恶果,因此,运
用各种手段减少风电机组的故障率,并且在有限的时间内及时的排除风电机组的
各类故障,对于风电机组的平稳运行和良好发电具有极其重要的意义[3]。
2.风电机组的主要结构
风电机组可以利用风轮装置将风能转变为机械能,然后再通过发电机发电,
从而达到风能到电能的转化,是一种新型清洁发电装置。
现阶段我国常见的风电
机组主要为水平轴和垂直轴两大类,其中水平轴应用更加广泛,如图1所示。
图1 水平轴风电机组结构
(1)风轮装置。
包括叶片、轮毂、变桨系统、齿轮箱等,可在风力推动下
利用齿轮旋转存储机械能;(2)发电装置。
主要为发电机组、配套装置、
控制系统等,可以利用机械转动在电磁场中产生感应电流。
(3)配套装置。
包括塔筒、加固件等辅助装置,保证风电机组安全、稳定运行。
2 .风电机组关键部件可靠性评估
2.1 数据模型分析风电机组关键部件可靠性分析过程中可以利用数据
模型实现,即通过数据库中的历史数据分析和数据模型对比,确定关键部件的可
靠性、稳定性和有效性,及时发现其在运行过程中存在的安全隐患。
一般数
据模型分析过程中可以借助威布尔分布、Gamma分布、指数分布等进行拟合评估,确定风电机组关键部件的故障率更加接近于哪种曲线。
如在威布尔数据模型分析中,可将风电机组关键部件故障数据函数模型设置为:
其中,λ为权重系数,可参考专家意见
有效设定;t0为初始时间参数,t为故障时间;η1、η2为尺度参数;β1、β2
为威布尔分布形状参数。
在上述分析过程中若初始时间参数为0,η1、η2分别
为10和100,β1、β2均为5,此时风电机组故障概率密度如下图所示。
图2 风电机组故障概率随t变化情况
上述过程中在第一阶段中,新装风电机组需要经过一定的时间适应,此时会
出现明显的适应性问题,导致故障概率骤增。
在运行一段时间后,风电机组故障
概率基本稳定,此时出现故障概率平稳接近于0的状态。
随着时间的推移,风电
机组关键部件损耗、老化情况加剧,故障概率密度数值上升,呈现出损耗状态[4]。
2.2 载荷应力分析
除数据库分析外,在风电机组关键部件可靠性研究过程中还需要借助强度干
涉理论,确定部件的随机载荷和疲劳强度,在载荷能力基础上分析关键部件是否
存在老化、损坏等风险隐患,及时进行有效处理和维护。
一般风电机组关键
部件的载荷应满足:
其中,S为随机变量;δ为强度随机变量,σS为应力随机变量的标准差,
σδ为强度随机变量的标准差;μS为应力随机变量的期望,μδ为强度随机
变量的期望。
根据上述函数可以明显发现,其随机载荷和疲劳强度满足正态
分布规律,即
图3 风电机组载荷可靠性分析
由此观之,风电机组关键部件的可靠度随着使用时间的增加逐步降低。
其中,新装阶段受环境因素、适应性因素等的影响,新风电机组关键部件的可靠性系数
下降较为明显,在正常运行后则逐步趋于稳定。
随着使用年限的增加,风电机组
关键部件逐步老化、损坏,此时其可靠度下降非常明显。
3 .风电机组关键部件维护方案
3.1 结果分析
本次研究过程中主要以数据模型为例,对某风电机组关键部件性能进行研究。
将采集到的现场数据与威布尔分布模型拟合处理后,可明显发现该风电机组处于
第三环节,即使用时间较长,部分零部件出现老化、损坏情况,其故障概率密度
指数较高,包括齿轮箱故障、发电机异常、主轴承开裂等,如表1所示。
表1 风电机组关键部件故障情况及概率密度指数
3.2 维护方案
确定风电机组关键部件可靠性系数后,可按照各部件故障密度情况开展有效
处理和预防性维护:
(1)损伤处理。
逐一排查齿轮、发电机、轴承等老化、损坏情况,确定是
否存在润滑问题、过热问题、机械磨损等。
按照使用时间长度和疲劳损伤积累程
度适当修复损坏零部件,若老化损坏问题严重则应及时更换。
按照风电机组运行
环境实施相应防护,如增加散热装置、干燥装置,定期除尘清灰、紧固稳定等。
尤其是在恶劣环境状态下,要增加巡检和维护的次数,按照区域环境状况和风电
机组故障情况实施有效防护,从根本上降低由关键部件损伤引起的风电机组停运
问题。
(2)预防维护。
风电机组关键部件可靠性分析的过程中可以按照其结果制
定合理的整机寿命管理系统,由可靠性分析结果和预设寿命参数作为参考依据,
确定风电机组关键部件疲劳载荷状况,分析其是否存在故障风险,对可能出现的
问题进行修正和处理。
尤其是要把握好风电机组寿命状态与疲劳损伤的内在关联,在上述数据基础上实现科学、规范、高效管理,以保证风电机组能够更好地服务
于电网发电。
4. 总结
风电机组运维管理的过程中要对关键部件性能进行全面把握,在数据算法和模型分析基础上确定关键部件的可靠性和稳定性,确定其是否存在运行风险和质量损耗。
一旦存在上述问题,要及时开展现场检查,按照风电机组关键部件参数规格、安全指标等实施全面调整和优化,更换老化或损坏零部件,做好全方位运维管理,以全面提升风电机组运行的安全效益和经济效益。
参考文献:
[1]秦子川,苏宏升. 基于改进威布尔分布的风电机组关键部件可靠性评估[J]. 电测与仪表,2021,58(03):68-73.
[2]赵洪山,张路朋. 基于可靠度的风电机组预防性机会维修策略[J]. 中国电机工程学报,2014,34(22):3777-3783.
[3]韩中合,苑一鸣,刘华新,周沛. 基于区间数模糊的风电机组部件维修决策方法[J]. 太阳能学报,2019,40(05):1394-1400.
[4]杜胜磊,高庆水,潘巧波,邓小文,张楚,冯永新. 风电机组在线智能故障诊断技术发展趋势[J]. 黑龙江电力,2017,39(02):173-177.。