当前位置:
文档之家› 原子力显微镜(AFM)—上海交大分析测试中心
原子力显微镜(AFM)—上海交大分析测试中心
度进行直接测量,还不能将样品磁化强度通针尖与样品间的力对应起 来,因为样品表面附近有很高的磁偶极密度,这样样品漏磁场最高的区 域是空间坐标内磁化强度变化最快的地方,MFM检测到的就是针尖在样 品上方感受到的最强力。 下面首先讲一下升起模式Lift Mode,也是非接触模式
3.2 磁力(MFM)显微镜
1982年
扫描隧道 显微镜
人类第一次能够实时 地观察单个原子在物质表 面的排列状态和与表面电 子行为有关的物理、化学 性质,在表面科学、材料 科学、生命科学等领域的 研究中有着重大的意义和 广阔的应用前景,被国际 科学界公认为八十年代世 界十大科技成就之一。
1.1扫描探针显微镜的产生
扫描隧道显微镜 (STM)
2.2 力-距离曲线
三.扫描力显微镜的分类
3.1 原子力显微镜 3.1.1 斥力模式AFM 3.1.2 摩擦力显微镜 3.1.3 化学力显微镜 3.1.4 检测材料不同组分的技术 a. 相位成像技术 b .力调制技术 3.1.5 检测材料纳米硬度的技术
3.2 磁力显微镜 3.3静电力显微镜
3.1 原子力显微镜ຫໍສະໝຸດ 3.1.1 斥力模式AFM 探针与样品之间进行原子间接触,利用它们
之间的斥力得到样品表面的形貌。 具有两种工作模式:
3.1.1.1 接触模式 3.1.1.2 敲击模式(间歇接触)
3.1.1.1 接触模式(Contact Mode)
接触模式 非接触模式
轻敲模式
接触模式探针
接触模式探针示意图
接触模式工作示意图
Dendrimer-like Gold Nanoparticle[3]
DNA Translocation in Inorganic Nanotubes[4]
Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires[5]
1.1扫描探针显微镜的产生
1.3 原子力显微镜(AFM)的基本工作原理 z 直径≤15mm
1.3 原子力显微镜(AFM)的基本工作原理
SFM是使用一个一端固定而另一端装有针尖的弹性微悬 臂来检测样品表面形貌或其他表面性质的。当样品或针尖扫 描时,同距离有关的针尖-样品间相互作用力就会引起微悬 臂发生形变。也就是说,微悬臂的形变可以作为样品-针尖 相互作用力的直接度量。
AFM_Tapping_Feedback_Loop.swf
液体下敲击模式
操作同液体下的接触模 式
使用的探针是接触模式 使用的探针
由于探针处在液体中, 而非空气中,探针的共 振频率产生了改变,需 要重新设置
探针容易受到污染
3.1.2 摩擦力显微镜(LFM)
3.1.2 摩擦力显微镜(LFM)
高分辨定量结构分析以及掺杂浓度的分布等各种材料特性
失效分析: 缺陷识别,电性测量(甚至可穿过钝化层)和 键合电极的摩擦特性
生物应用: 液体中完整活细胞成象,细胞膜孔隙率和结构 表征,生物纤维测量,DNA成像和局部弹性测量
硬盘检查: 表面检查和缺陷鉴定,磁畴成象,摩擦力和磨 损方式,读写头表
薄膜表征: 孔隙率分析,覆盖率,附着力,磨损特性,纳 米颗粒和岛屿的分布
是研究纳米摩 擦的工具
受样品表面粗 糙度的影响
受环境湿度温 度等影响
摩擦系数的比较、计算
3.1.3 化学力显微镜
把探针表面进行功能化 修饰,使针尖表面带有 特殊的官能团
这种官能团与样品表面 的官能团成键
在探针抬起的过程中, 这种化学键作用力就会 在力曲线上粘附力中反 应出来
位置的精确控制:通过在电场作用下可以 伸缩的压电陶瓷完成。这种晶体在受到机械 力并发生形变时会产生电场,或给晶体加一 电场会产生物理形变。AFM中常用的是管状 压电陶瓷。
1.3 原子力显微镜(AFM)的基本工作原理
对微悬臂的设计要求
对微悬臂的设计要求: 1. 低的弹性常数,为了测量较小的力 2. 高的力学共振频率,为了得到与STM相当的数据采
原子力显微镜
Atomic Force Microscopy(AFM)
上海交通大学分析测试中心 李慧琴
基本内容
一. 原子力显微镜的产生、基本应用及其基本 工作原理
二 .探针与样品之间的作用力 三. 原子力显微镜的分类(AFM、MFM、E
FM、CFM等) 四. 原子力显微镜测试结果的影响因素及其应
用展望
3.2 磁力(MFM)显微镜 ——Lift Mode
Lift Mode 适用 于在轻敲模式下
一. 原子力显微镜的产生、基 本应用及其基本工作原理
1.1 扫描探针显微镜的产生的必然性
低能电子衍射 和
X射线衍射
高分辨透射电子 显微镜
光学显微镜 和
扫描电子显微镜
X射线光电子 能谱
场电子显微镜 和
场离子显微镜
样品具有周期性结构
用于薄层样品的体相和界面研究
不足分辨出表面原子
只能提供空间平均的电子结构 信息
的程度得到的,检测微悬臂弯曲的方式有: 1. 隧道电流法:同隧道扫描中使用的方法类似,
2. 电容检测法:微悬臂受力而产生的位移将改变与 之相连的电容极间距离,电容值发生变化,电容 极间还可由一个压电陶瓷驱动器来控制
3. 光学检测法,有光干涉法和激光束反射检 测法。 可以检测出微悬臂0.01nm幅度的弯曲。
集速度和成像带宽。 3. 高的横向刚性,将微悬臂制成V形会提高刚性,为
了减少横向力的影响。 4. 短的悬臂长度,臂长越短,悬臂的弯曲角度就越
大,以提高检测灵敏度 5. 传感器带有镜子或电极,使得能通过光学或隧道电
流检测其动态位移 6. 带有一个尽可能尖锐的针尖
微悬臂弯曲的检测方式
AFM 微悬臂弯曲的检测方式: AFM图像是通过在样品扫描时测量微悬臂受力弯曲
照射到微悬臂背面的激光反射到一个具有四个象限的光电 检测器上,检测器不同象限接收的激光强度差值同微悬臂的 形变量形成一的比例关系。如微悬臂的形变为0.01nm,激光 反射到光电检测器上,则可变成3-10nm 的位移,足够产生 可测量的电压差,反馈系统根据检测器电压的变化不断调整 针尖或样品Z轴方向的位置,以保持针尖-样品间的作用力恒 定。通过测量检测器电压对样品扫描位置的变化,就可得到 样品的表面形貌图像。
只能探测在半径小于100nm的针尖上的原子 结构和二维几何性质,且制样技术复杂
1.1扫描探针显微镜的产生的必然性
纳米科技突飞猛进的发展
Biomolecular Recognition on Vertically Aligned Carbon Nanofibers[1]
ε-Co nanocrystals coated by a monolayer of poly(acrylic acid)-blockpolystyrene [2]
AFM_Contact_Feedback_Loop.swf
接触模式力曲线
接触模式力曲线
各种典型的力曲线
接触模式力的计算
F= k (△ Z ) △ Z =7.6div*10V/div*Z
piezo sensitivity
是探针和样品间范德华 力、静电力、毛细力 等综合力的表现
液体下的接触模式
液体环境下的接触模式
3.1.4 检测材料不同组分的技术
a. 相位成像技术 b. 力调制技术
a.相位(phase)成像技术
探针共振时的振幅和相位图
a.相位(phase)成像技术
用于在轻敲模 式下的相分离 扫描
用于复合材料、 表面污染物等 测试
同时也可得到 比较清晰的轮 廓图
SEBS的分相结构
b. 力调制(force modulation)技术
1.3 原子力显微镜(AFM)的基本工作原理
微悬臂长为100-200 微米
弹性系数0.0041.85N/m
针尖曲率半径30nm 微悬臂0.01nm的形
变,激光束反射到光
△ F=k*△电z接收器上,可变成 △ △z—形3-1变0n量m的位。
△ k—微悬臂的弹性系数
△ F—作用力
1.3 原子力显微镜(AFM)的基本工作原理
4、可在真空、大气、常温等不同环境下工作,甚至可将样 品浸在水和其它溶液中,不需要特别的制样技术,并且探测过 程对样品无损伤。
应用:适用于研究生物样品和在不同试验条件下对样品表 面的评价,例如对于多相催化机理、超导机制、电化学反应过 程中电极表面变化的监测等。
1.2 扫描探针显微镜的特点及其应用
5、配合扫描隧道谱,可以得到有关表面结构的信息,例如 表面不同层次的态密度、表面电子阱、电荷密度波、表面势垒 的变化和能隙结构等。
第二种原因是它们之间毛细力,相互吸引 使得针尖发生跳触。
2.1 力的分类
4. 黏附力 与样品的表面性质,杂质和缺陷有关
5. 摩擦力 悬臂与表面接触,同时又在表面上横向移动,产生 滑动摩擦。
6. 毛细力 7. 磁力,用以测试磁性材料表面的磁畴。 8. 静电力, 类似于磁力,可以用来测量表面的电荷密
度等。
弹性系数的计算
3.1.1.2 轻敲模式(Taping Mode)
轻敲模式探针示意图
3.1.1.2 轻敲模式(Taping Mode)
3.1.1.2 轻敲模式(Taping Mode)
探针间歇接触样品表 面
适用于柔软样品,如 高分子、生物样品以 及复合材料表面组成 的分布的测试
TappingMode -示意图
1.2 扫描探针显微镜的特点及其应用
2、可实时地空得到实时间中表面的三维图像,可用于具有 周期性或不具备周期性的表面结构研究。
应用:可用于表面扩散等动态过程的研究。
3、可以观察单个原子层的局部表面结构,而不是体相或整 个表面的平均性质。