立体几何中的最值问题一、线段长度最短或截面周长最小问题例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之.解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22AN AM +=22)12(1++=10(2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2.则MN =︒⋅-+120cos 222AN AM AN AM =21312)3(122⨯⨯⨯++=34+∵34+<10 ∴m in MN =34+.例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。
点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<<a (1)求MN 的长;(2)当a 为何值时,MN 的长最小; (3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小。
解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。
∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1,∴2==BF AC ,21,21a BQ a CP ==, 即2aBQ CP ==, ∴=+-==22)1(BQ CP PQ MN )20(21)22()2()21(222<<+-=+-a a a a (2)由(1)知: 2222==MN a 时,当,的中点时,分别移动到即BF AC N M ,, 22的长最小,最小值为MN(3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN ,∴∠AGB 即为二面角α的平面角。
又46==BG AG ,所以由余弦定理有31464621)46()46(cos 22-=••-+=α。
故所求二面角)31arccos(-=α。
例3. 如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)20(πθθ<<。
点M 在AC 上,点N 在BF 上,若AM=FN ,(1)求证:MN//面BCE ; (2)求证:MN ⊥AB;A(3)求MN 的最小值.解析:(1)如图,作MG//AB 交BC 于G, NH//AB 交BE 于H, MP//BC 交AB 于P, 连PN, GH , 易证MG//NH,且MG=NH, 故MGNH 为平行四边形,所以MN//GH , 故MN//面BCE ; (2)易证AB ⊥面MNP, 故MN ⊥AB ;(3)MPN ∠即为面ABCD 与ABEF 所成二面角的平面角,即θ=∠MPN ,设AP=x , 则BP=a -x , NP=a -x , 所以:θcos )(2)(22x a x x a x MN ---+=22)cos 1(21)2)(cos 1(2a a x θθ-+-+=,故当2a x =时,MN有最小值a )cos 1(21θ-. 例4.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。
点M 在AC 上移动,点N 在BF 上移动,若CM=x ,BN=y, ).2,0(<<y x (1)求MN 的长(用x,y 表示);(2)求MN 长的最小值,该最小值是否是异面直线AC ,BF 之间的距离。
解析:在面ABCD 中作MP ⊥AB 于P ,连PN ,则MP ⊥面ABEF ,所以MP ⊥PN ,PB=1-AP=x 22在∆PBN 中,由余弦定理得:ABFECDPNMPN 2=02245cos 2)22(xy y x -++ xy y x -+=2221,在PMN Rt ∆中,MN=xy y x x PN MP -++-=+2222221)221(1222+--+=x xy y x ).2,0(<<y x ;(2)MN 1222+--+=x xy y x 31)322(43)2(22+-+-x xy ,故当322=x ,32=y 时,MN 有最小值33。
且该最小值是异面直线AC ,BF 之间的距离。
例5. 如图,在ΔABC 中,∠ACB =90°,BC =a,AC =b,D 是斜边AB 上的点,以CD 为棱把它折成直二面角A —CD —B 后,D 在怎样的位置时,AB 为最小,最小值是多少?解析: 设∠ACD =θ,则∠BCD =90°-θ,作AM ⊥CD 于M ,BN ⊥CD 于N ,于是AM =bsin θ,CN =asin θ.∴MN =|asin θ-bcos θ|,因为A —CD —B 是直二面角,AM ⊥CD ,BN ⊥CD ,∴AM 与BN 成90°的角,于是AB =22222)cos sin (cos sin θθθθb a a b -++=θ222sin ab b a -+≥ab b a -+22.∴当θ=45°即CD 是∠ACB 的平分线时,AB 有最小值,最小值为ab b a -+22.例6. 正三棱锥A-BCD ,底面边长为a ,侧棱为2a ,过点B 作与侧棱AC 、AD 相交的截面,在这样的截面三角形中,求(1)周长的最小值;(2)周长为最小时截面积的值,(3)用这周长最小时的截面截得的小三棱锥的体积与三棱锥体积之比.解析:(1)沿侧棱AB 把正三棱锥的侧面剪开展成平面图.如图1,当周长最小时,EF 在直线BB ′上,∵ΔABE ≌ΔB ′AF ,∴AE =AF ,AC =AD ,∴B ′B ∥CD ,∴∠1=∠2=∠3,∴BE =BC =a ,同理B ′F =B ′D =a.∵ΔFDB ′∽ΔADB ′,∴B D DF '=B A B D '',a DF =a a 2=21,∴DF =21a,AF =23a.又∵ΔAEF ∽ΔACD ,∴BB ′=a+43a+a =411a,∴截面三角形的周长的最小值为411a.(2)如图2,∵ΔBEF 等腰,取EF 中点G ,连BG ,则BG ⊥EF.∴BG =22EG BE -=22)83(a a -=855a ∴S ΔBEF =21·EF ·BG =21·43a ·855a =64553a 2.(3)∵V A-BCD =V B-ACD ,而三棱锥B —AEF ,三棱锥B —ACD 的两个高相同,所以它们体积之比于它们的两底面积之比,即CAD B AEF B V V --=ACD AEF S S △△=22CD EF =169 评析 把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.本题中的四面体,其中任何一个面都可以做为底面,因而它可有四个底面和与之对应的四条高,在解决有关三棱锥体积题时,需要灵活运用这个性质.二、面积最值问题例7. 如图1所示,边长AC =3,BC =4,AB =5的三角形简易遮阳棚,其A 、B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角,试问:遮阳棚ABC 与地面成多大角度时,才能保证所遮影面ABD 面积最大?解析: 易知,ΔABC 为直角三角形,由C 点引AB 的垂线,垂足为Q ,则应有DQ 为CQ 在地面上的斜射影,且AB 垂直于平面CQD ,如图2所示.因太阳光与地面成30°角,所以∠CDQ =30°,又知在ΔCQD 中,CQ =512,由正弦定理,有 ︒30sin CQ =QCD QD ∠sin 即 QD =56sin ∠QCD. 为使面ABD 的面积最大,需QD 最大,这只有当∠QCD =90°时才可达到,从而∠CQD = 60°.故当遮阳棚ABC 与地面成60°角时,才能保证所遮影面ABD 面积最大.例8. 在三棱锥A —BCD 中,ΔABC 和ΔBCD 都是边长为a 的正三角形,二面角A —BC —D =φ,问φ为何值时,三棱锥的全面积最大。
解析:S ΔBAC =S ΔBCD =43a 2为常量,所以三棱锥全面积的大小取决于S ΔABD与S ΔACD 的大小,由于ΔABD ≌ΔACD ,所以只求S ΔACD 何时面积取最大值即可。
∵S ΔACD =21asin ∠ACD ,所以当∠ACD =90°时面积最大,问题得解。
解 如图,取BC 中点M ,连AM 、DM ,∴ΔABC 和ΔBCD 都是正三角形,∴∠AMD 是二面角A-BC-D 的平面角,∠AMD =φ,又∵ΔABD ≌ΔACD ,且当∠ACD =90°时,ΔACD 和ΔABD 面积最大,此时AD =2a ,在ΔAMD 中,由余弦定理cos ∠AMD =-31,∴当φ=π-arccos 31时,三棱锥A-BCD 的全面积最大。
点评 本题将求棱锥全面积的最大值,转化为求ΔACD 面积的最大值,间接求得φ角。
例9、一个圆锥轴截面的顶角为1200,母线为1,过顶点作圆锥的截面中,最大截面面积为 。
分析:本题是截面问题中的常见题,设圆锥的轴截面顶角是α,母线长为l ,则截面面积S max =⎪⎪⎩⎪⎪⎨⎧∈∈],2[21)2,0(sin 2122ππαπααl l ,本题轴截面顶角为1200,∴最大面积为21。
例10、圆柱轴截面的周长L 为定值,求圆柱侧面积的最大值。
分析:设圆柱的底面直径和高分别为d,h,则有:2(d+h )=L,d+h=L/2,S 侧=πdh ≤π22⎪⎭⎫ ⎝⎛+h d =162lπ(当且仅当d=h 时取“=”)。