复合材料层合板分析
The left side reacts the loads with X, Y, Z, and Ry constraints.
NAS121, Workshop , May 6, 2002
WS-2
Problem Description
The layup is made of graphite/epoxy tape and is shown to the right.
c
seeds.
a. Select Create / Mesh Seed / Uniform
b. Click on the top edge of the plate to create a mesh seed
c. Then click on the right edge
NAS121, Workshop , May 6, 2002
WS-8
Step 3. Create a finite element mesh
In the Elements menu create surface mesh based on the mesh seeds assigned in the previous steps.
a. Select Create / Mesh / Surface
g. Click Apply
d f
NAS121, Workshop , May 6, 2002
WS-11
b c
g
Step 5a. Apply loads to the model (cont.)
In a similar way create Dist. Load X: a. Enter “Dist. Load X” for New Set Name. b. In Input Data, Enter <0 –1000 0>, then OK c. In Select Application Region, click on the right hand side curve of the surface, then Add, then OK.
d. Click OK
e. Click Apply
f. Click Input Properties again, Select Failure / Stress / Hill and enter 120e3, 13e3, 110e3, 16e3, 13e3, 5000.
g. Click OK
h. Click Apply again
d. On the top menu click on the Curve or Edge icon
e. In Select Application Region click lefthand edge of the surface
f. Click Add and OK
g. Click Apply
NAS121, Workshop , May 6, 2002
name c. Click OK d. Choose Default Tolerance e. Select MSC.Nastran as the
Analysis Code f. Select Structural as the
Analysis Type g. Click OK
NAS121, Workshop , May 6, 2002
The failure theorem to be used is Hill.
E11 20e6 E22 2e6 U12 .35
G12 1e6 G13 1e6 G23 1e6 Xt 120 ksi Xc 110 ksi Yt 13 ksi Yc 16 ksi S 14 ksi Sb 5 ksi
NAS121, Workshop , May 6, 2002
b
c
WS-6
d
e f g
Step 1. Create a geometry model
d
In Geometry create the first curve.
a. Select Create / Surface / Vertex
b. On the Surface Vertex “n” Lists enter [0 0 0], [1 0 0], [1 1 0], [0 1 0]
d. Click Apply
e. Note that since the same edge was picked, the loads are combined
NAS121, Workshop , May 6, 2002
WS-12
a e
b c
d
Step 6. Define ply material properties
WORKSHOP Define a Composite Material
NAS121, Workshop , May 6, 2019
WS-1
Problem Description
A 1 in. x 1 in. composite plate is loaded with 2000 #/in. in the Y direction on the top edge, 1000 #/in. in both the X direction and Y direction on the right hand side edge.
d. In Input Data, Enter <0 –2000 0> for Edge Distr Load <f1 f2 f3>, then OK
e. In Select Application Region, click on the top curve of the surface
f. Click Add then OK
f g
NAS121, Workshop , May 6, 2002
WS-13
c d
a b
eh
Step 7. Check Element Normals
a
b
Check element normals to
c
determine the location of ply 1.
Select the Element menu:
WS-4
Suggested Exercise Steps
a. Create a geometry model. b. Use mesh seeds to define the mesh density. c. Create a finite element mesh. d. Apply boundary conditions to the model. e. Apply loads to the model. f. Define ply material properties. g. Check element normals h. Define composite material properties. i. Define a material coordinate system j. Apply the material coordinate system to the elements. k. Submit the model to MSC.Nastran for analysis. l. Attach xdb Results File m. Display ply stresses using MSC.Patran. n. View ply failure indices in MSC.Nastran o. Change layup to make failure indices below 1.0. p. Analyze the model with the new composite layup q. View the changed ply failure indices
d a
c
b f
g
WS-10
Step 5. Apply loads to the model
a
a. On the top menu
click Reset
e
Graphics
b. Select Create / Distributed Loads / Element Uniform
c. Enter “Dist. Load Y” for New Set Name
c. Click Apply d. Click the Show Label icon
a b
c
NAS121, Workshop , May 6, 2002
WS-7
Step 2. Use mesh seeds to define the mesh density
a b
In Elements, create mesh
NAS121, Workshop , May 6, 2002
WS-3
Problem Description (cont.)
The composite plies are graphite/epoxy tape with a thickness of 0.0054 in.
The elastic and strength properties are shown on the right.
Go to Material menu
a. Select Create / 2d Orthotropic / Manual Input
b. For Material Name enter “graphiteepoxy_tape”
c. Click Input Properties, Select Linear Elastic, enter 20e6, 2e6, .35, 1e6, 1e6, 1e6