当前位置:文档之家› 数列通项公式的十种方法(已打)

数列通项公式的十种方法(已打)

递推式求数列通项公式常见类型及解法对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列,也可以通过构8造把问题转化。

下面分类说明。

一、型例1. 在数列{a n}中,已知,求通项公式。

解:已知递推式化为,即,所以。

将以上个式子相加,得,所以。

二、型例2. 求数列的通项公式。

解:当,即当,所以。

三、型例3. 在数列中,,求。

解法1:设,对比,得。

于是,得,以3为公比的等比数列。

所以有。

解法2:又已知递推式,得上述两式相减,得,因此,数列是以为首项,以3为公比的等比数列。

所以,所以。

四、型例4. 设数列,求通项公式。

解:设,则,,所以,即。

设这时,所以。

由于{b n}是以3为首项,以为公比的等比数列,所以有。

由此得:。

说明:通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)。

五、型例5. 已知b≠0,b≠±1,,写出用n和b表示a n的通项公式。

解:将已知递推式两边乘以,得,又设,于是,原递推式化为,仿类型三,可解得,故。

说明:对于递推式,可两边除以,得,引入辅助数列,然后可归结为类型三。

六、型例6. 已知数列,求。

解:在两边减去。

所以为首项,以。

所以令上式,再把这个等式累加,得。

所以。

说明:可以变形为,就是,则可从,解得,于是是公比为的等比数列,这样就转化为前面的类型五。

等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。

转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。

附:构建新数列巧解递推数列竞赛题递推数列是国内外数学竞赛命题的“热点”之一,由于题目灵活多变,答题难度较大。

本文利用构建新数列的统一方法解答此类问题,基本思路是根据题设提供的信息,构建新的数列,建立新数列与原数列对应项之间的关系,然后通过研究新数列达到问题解决之目的。

其中,怎样构造新数列是答题关键。

1 求通项求通项是递推数列竞赛题的常见题型,这类问题可通过构建新数列进行代换,使递推关系式简化,这样就把原数列变形转化为等差数列、等比数列和线性数列等容易处理的数列,使问题由难变易,所用的即换元和化归的思想。

例1、数列{}n a 中,11=a ,()n n n a a a 241411611+++=+。

求n a 。

(1981年第22届IMO 预选题)分析 本题的难点是已知递推关系式中的n a 241+较难处理,可构建新数列{}n b ,令n n a b 241+=,这样就巧妙地去掉了根式,便于化简变形。

解:构建新数列{}n b ,使0241>+=n n a b则 51=b ,n na b 2412+= ,即2412-=n n b a∴ ⎪⎪⎭⎫ ⎝⎛+-⨯+=-+n n n b b b 24141161241221化简得 ()()22132+=+n n b b ∴ 321+=+n n b b ,即 ()32131-=-+n n b b数列 {}3-n b 是以2为首项,21为公比的等比数列。

n n n b --=⎪⎭⎫⎝⎛⨯=-2122123 即 322+=-n n b∴ 121122231232241---⨯+⨯+=-=n n n n n b a2 证明不等式这类题一般先通过构建新数列求出通项,然后证明不等式或者对递推关系式先进行巧妙变形后再构建新数列,然后根据已经简化的新数列满足的关系式证明不等式。

例2、设10=a ,12111---+=n n n a a a ()N n ∈,求证:22+>n n a π。

(1990年匈牙利数学奥林匹克试题)分析 利用待证的不等式中含有π及递推关系式中含有211-+n a 这两个信息,考虑进行三角代换,构建新数列{}n α,使n n tg a α=,化简递推关系式。

证明:易知0>n a ,构建新数列{}n α,使n n tg a α=,⎪⎭⎫⎝⎛∈2,0παn 则 2sin cos 111111112-----=-=-+=n n n n n n tg tg tg a ααααα∴ 21-=n n tg tg αα,21-=n n αα又 10=a ,8121πtga =-=,从而 81πα=因此,新数列{}n α是以8π为首项,21为公比的等比数列。

212821+-=⋅⎪⎭⎫⎝⎛=n n n ππα考虑到当)2,0(π∈x 时,有 x tgx >。

所以,2222++>=n n n tga ππ注:对型如 21n a ±,n a ±1,111++±n n nn a a a a 都可采用三角代换。

3 证明是整数这类题把递推数列与数论知识结合在一起,我们可以根据题目中的信息,构建新数列,找到新的递推关系式直接解决,或者再进行转化,结合数论知识解决。

例3、设数列{}n a 满足11=a ,nn n a a a 1211+=+ )(N n ∈ 求证:N a n∈-222()1,>∈n N n 。

分析 直接令222-=nn a b ,转化为证明N b n ∈ )1,(>∈n N n证明:构建新数列{}n b ,令0222>-=nn a b则 2422+=n n b a ,242121+=++n n b a代入 221121⎪⎪⎭⎫ ⎝⎛+=+n n n a a a 整理得()222124n n n b b b +=+ 从而 ()2121224--+=n n n b b b )3(≥n于是 ()[]()[]2212121221122424+=++=---+n n n n n n b b b b b b )3(≥n∴ ()12211+=-+n n n b b b )3(≥n由已知,42=b ,243=b ,由上式可知,N b ∈4,N b ∈5,依次类推,N b n ∈ )1(>n ,即N a n∈-222。

例4、设r 为正整数,定义数列{}n a 如下: 11=a ,2)1(221+++=+n n na a r n n )(N n ∈ 求证:N a n ∈。

(1992年中国台北数学奥林匹克试题)分析 把条件变形为()()rn n n na a n 21122++=++比较1+n a 与 n a 前的系数及1+n a 与 n a 的足码,考虑到另一项为()rn 212+,等式两边同乘以()1+n ,容易想到构新数列{}n b ,使()n n a n n b 1+=。

证明:由已知得()()rn n n na a n 21122++=++∴ ()()()()12112121+++++=++r n n n a n n a n n 构建新数列{}n b ,()n n a n n b 1+=则21=b ,()12112+++=-r n n n b b ∴()∑-=+-+=1111n k k k n b b b b()1212123212+++++++=r r r n ∴ N bn∈[]∑-=+++-++=11121212)(2n k r r r n k n k nb()∑-=+-++++⋅+-+-+=112212212212211212122n k rr r r r r r r r k n C k n C k n C n n∴ n b n又 ()[]∑∑∑=++==++-++=-++=nk r r nk nk r r n k n k k n kb 112121112121)1(()()()()[]∑=+++++++-++⋅+-+=nk rr r r r rr r kn C k n C k n C n 122122122122112121111 ∴ ()1+n | n b∴ ()1+n n | n b ,从而 N a n ∈。

4 解决整除问题一般通过构建新数列求出通项,再结合数论知识解决,也可用数学归纳法直接证明。

例5、设数列{}n a 满足11=a ,32=a ,对一切N n ∈,有()()n n n a n a n a 2312+-+=++,求所有被11整除的n a 的一切n 值。

(1990年巴尔干地区数学奥林匹克试题)分析 变形递推关系式为()()n n n n a a n a a -+=-+++1122,就容易想到怎样构建新数列了。

解:由已知()()n n n n a a n a a -+=-+++1122 构建新数列{}(),2≥n b n n n n a a b -=++11 ()1≥n 则22=b ,()()()n n n n b n a a n b 1111+=-+=-+ ()2≥n∴ ()()!311221n b n n b n n nb b n n n =-==-==-- ()2≥n ∴ ()∑∑∑===-=+=-+=nk nk k nk n n n k b a a a a 12211!1从而3114⨯=a ,4203118⨯=a ,3670831110⨯=a ,当11≥n 时,由于∑=101!k k 被11整除,因而∑∑==+=nk k n k k a 11101!!也被11整除。

所以,所求n 值为4=n ,8,及10≥n 的一切自然数。

5 证明是完全平方数这类题初看似乎难以入手,但如能通过构建新数列求出通项n a ,问题也就迎刃而解了。

例6、设数列{}n a 和{}n b 满足10=a ,00=b ,且⎩⎨⎧-+=-+=++47836711n n n n n n b a b b a a () ,2,1,0=n 求证:n a 是完全平方数。

(2000年全国高中联赛加试题)分析 先用代入法消去n b 和1+n b ,得061412=++-++n n n a a a ,如果等式中没有常数项6,就可以利用特征根方法求通项,因此可令a a C n n +=,易求得21-=a 。

证明:由①式得n b ,1+n b 代入②得 061412=++-++n n n a a a化为021********=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-++n n n a a a 构建新数列{}n c ,21-=n n a c ,且210=c , ()2721367210011=--+=-=b a a c ()01412=+-++n n n c c c由特征方程 01142=+-λλ 得两根 3471+=λ,3472-=λ所以 n n n m m c 2211λλ+=当0=n ,1时,有()()⎪⎪⎩⎪⎪⎨⎧=-++=+21347347212121m m m m 解得:4121==m m 则 ()()n n n c 3474134741-++= ① ②()()n n 2232413241-++= 则()()232324121⎥⎦⎤⎢⎣⎡-++=+=n n n n c a 因为()()nn 3232-++ 为正偶数,所以,na 是完全平方数。

相关主题