电气传动实验报告Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT电气传动课程设计摘要:本课题主要内容为双闭环调速系统调试与测试的过程及结果,其中包括了实验设计过程,原始设备参数的测量,参数设计,实验仿真和系统的实际调试结果等内容,最终得到符合要求的双闭环调速系统。
本报告开始部分明确了课程设计任务,随后是对本课题的发展现状及背景的一些研究情况,之后介绍了所用设备以及实验台的具体情况。
接下去详细说明了电机各个参数的测试过程及结果,并在其基础上进行调节器参数计算设置,给出了计算机仿真过程和结果。
最后部分是现场调试的过程及说明并给出结论。
直流电动机具有优良的起动,制动和调速性能。
直至今日,直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。
因为它具有良好的线性特性,优异的控制性能,高效率等优点。
而双闭环调速系统则可以在保证系统稳定性的基础上实现转速无静差,且有良好的动态特性特别是启动特性,能有效地控制电机,提高其运行性能,应用广泛,值得加以研究,对国民经济具有十分重要的现实意义。
关键字:双闭环调速直流电机MATLAB仿真目录1、课程设计任务书内容:设计并调试直流双闭环调速系统。
硬件结构:电流环与转速环(两个PI调节器)。
驱动装置:晶闸管整流装置。
执行机构:直流电机。
性能指标:稳态:无静差。
动态:电流超调量小于5%;空载启动到额定转速时的转速超调量小于10%。
2、课题的发展状况研究意义调速系统是当今电力拖动自动控制系统中应用最广泛的一中系统。
目前对调速性能要求较高的各类生产机械大多采用直流传动,简称为直流调速。
在50年代末晶闸管出现,晶闸管变流技术日益成熟,使直流调速系统更加完善。
晶闸管-电动机调速系统已经成为当今主要的直流调速系统,广泛应用于世界各国。
近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。
直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。
不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、高智能化特点。
同时直流电机的低速特性,大大优于交流鼠笼式异步电机,为直流调速系统展现了无限前景。
单闭环直流调速系统对于运行性能要求很高的机床还存在着很多不足,快速性还不够好。
而基于电流和转速的双闭环直流调速系统静动态特性都很理想。
电气传动技术在我国经济和社会的发展中发挥着举足轻重的作用,随着现代科学技术的不断发展,越来越多的先进技术融入到电气传动技术的研究中,这促使电气传动技术不断向着实用化、智能化、信息化、交流化、数字化、集成化和绿色化的方向发展。
3、设备选型型号:130SZ01功能: 体积小、重量轻、力能指标高、噪声低、产品系列化程度高、零部件通用化程度强等特点,被广泛应用于各种机械及自动化控制系统中作执行元件。
市场价格:490元交直流电流传感器(IN:AC/DC 0-5A;OUT:DC 0-5V)型号:WBI125E01受限制:输入电流范围大小在0至5A ,输出电压范围大小在0至5V ,电流测量精度为+%工作原理: 光电隔离原理、磁调制隔离原理功能: 检测交流供电线路的电流值时,为防止损坏测试系统、危害人身安全,检测系统不能与强电直接相连。
交直流电流传感器可以将待检测的电流信号转换为便于测量的直流信号并进行隔离传送,构成一个具有隔离功能的检测电路,以保证系统电路和操作人员的安全。
可对电网或电路中的交直流电流进行实时测量,具有体积小、响应快、高精度、低漂移等特点。
输入、输出回路完全隔离,输出信号与电源共地,可以直接与各型A/D转换器配接,构成数据集中采集系统。
市场价格:170元交直流电压传感器(IN:AC/DC 0-500V;OUT:DC 0-5V)型号:WBV125E01受限制:输入电压范围大小在0至500V ,输出电压范围大小在0至5V ,电压测量精度为+%工作原理: 光电隔离原理、磁调制隔离原理功能: 检测交流供电线路的电压值时,为防止损坏测试系统、危害人身安全,检测系统不能与强电直接相连。
交直流电压传感器可以将待检测的电压信号转换为便于测量的直流信号并进行隔离传送,构成一个具有隔离功能的检测电路,以保证系统电路和操作人员的安全。
可对电网或电路中的交直流电压进行实时测量,具有体积小、响应快、高精度、低漂移等特点。
输入、输出回路完全隔离,输出信号与电源共地,可以直接与各型A/D转换器配接,构成数据集中采集系统。
市场价格:207元4、实验台简介实验台主要分为给定、驱动、执行、检测、电源及保护几个功能模块。
接口分为两种,一种为强电接口,一种为弱电接口。
对应的由强电开关和弱电开关控制其电源通断。
.弱电给定模块给定模块用于产生不同大小极性的阶跃,斜坡信号。
在本实验中主要使用阶跃信号,作为控制信号控制晶闸管的导通角,从而起到控制电枢电压的作用。
实验台给定模块.驱动模块驱动模块由晶闸管构成的三相桥式可控电路构成,在实验中为电动机提供可控的电枢电压,受给定模块控制。
实验台驱动模块.执行模块执行模块及电动机以及发电机,是实验的关键部分。
其四个电枢接口,四个励磁接口共八个接口被引导实验台面上,剩余部分摆放在实验台右侧。
实验台执行模块检测模块本试验中用到的检测模块主要包括电流和转速的检测模块,用于搭建反馈通道,其中反馈系数可以根据需要自行调整。
转速检测模块.电源和电源保护模块电源模块提供了共3个档位的三相交流电源,电源保护模块提供了各种故障的提示灯,复位键以及强电弱电两组开关,帮助快速找到故障原因,迅速纠正,避免危险。
电源模块电源保护模块完整丰富的实验台给我们调试出完美的双闭环调速系统提供了条件5、参数测试测量电机两条机械特性曲线,并得到静差率。
设计实验电路图如图:图:机械特性测试电路图分别将电枢两端电压调至110V和55V时,测出两条机械特性曲线。
数据如下:Ua=110V :Ua=55V :机械特性曲线如图图:机械特性曲线测量电枢回路各个电阻。
设计实验电路如图:电枢回路电阻测量电路由11d r d U U I R =+和22d r d U U I R =+两式联立可得到:这个R 指回路总电阻,主要包括电枢电阻Ra ,电抗器电阻Rl ,电源内阻Rn 。
我们可以通过测得R ,短路电动机得到R-Rm ,短路电动机及电抗得到R-Rm-Rl 。
通过计算可得到R ,Ra 和Rn 。
经过测量整理计算得到: R=,Ra=,Rn=测量电势常数。
调节负载使得不同电压时电流始终相等,此时n=Ud/ Ce Φ,因此测得不同转速下的整流电压值可联立方程得到:1212d de U U C n n ϕ-=-测得I=时两组数据分别为:U=80V ,n=1200r/min 和U=,n=1000r/min 。
带入公式得到Ce Φ=[V/(rmin-1)]。
又Cm Φ=Φ=、计算飞轮矩GD2并计算机电时间常数: 根据电磁转矩平衡方程式,测试飞轮转矩。
当突然断电时,电磁转矩为0,此时若为容易算得的空载转矩可得到公式:20375dn GD T dt =-⋅;20375/()dn T GD dt=-; 其中200009.55/9.55()/d T P n U I I R n ==-首先测一组空载数据,即n=1000r/min ,U=,I=,带入式中计算得到T 0=M 。
在空载情况下电机运行在1500r/min 时突然断电,由示波器测得n 变化为零所用时间为,可得到n 的导数为273。
代入上述两个结果得到飞轮矩GD 2=M 2。
根据以上结果及公式:2375m e m GD RT C C ϕϕ⋅=,机电时间常数Tm=6、参数设计转速、电流双闭环调速系统的设计主要分三步进行,首先要确定与转速、电流环有关的参数,如反馈系数等;然后依次设计电流环和转速环。
转速、电流双闭环系统动态结构图如下:1/T 0n s+11/C e ΦASR αn /T 0n s+11/T 0i s+1+-Ui*(S)Un*(s)n(s)R/T m s IdL(s)-ACR Uct(S)βi /T 0i s+1K s /T s s+1Ud(s)1/T 0i s+1E(s)--图:双闭环调速系统动态结构图反馈系数和滤波时间常数 首先,确定=1/300,=, 由 ,得电流环限幅为。
由 ,得转速环限幅为5V 。
晶闸管构成的三相桥式电路最大可能的失控时间就是自然换相点之间的时间,即。
电流滤波时间常数,转速滤波时间常数。
电流环参数设计将电流环校正为典型Ⅰ型系统,流环小时间常数之和.电流环控制对象是双惯性的,因此可用PI 型电流调节器。
其传递函数为: 取,其中电流环开环增益:要求时,按照典型I 型系统动态跟随性能指标和频域指标与参数的关系,应取,因此:于是,ACR 的比例系数为 ,可计算得到: 转速环参数设计将电流环看做转速环中的一个环节。
其近似传函为 转速环小时间常数: 转速调节器结构选择:按照设计要求,选用PI调节器,器传递函数为按跟随和抗扰性能都较好的原则取h=5,则ASR得超前时间常数为转速开环增益:则,可计算得到:7、系统仿真调试直流电机模型仿真根据测试得到的电机及电路参数,即R=,,CeΦ=[V/(rmin-1)],Tm=,利用Matlab 中的simulink工具进行仿真,如图图:直流电机模型仿真结构图通过给定输入电压以及负载,与实际测得数据相比较之后发现相差不大,该系统模型可用。
双闭环系统模型仿真接下来,在开环模型的基础上,搭建双闭环调速系统仿真模型。
首先经过估算将设置为1/300,设置为,由于使用三相桥式电路,Ts=。
依据之前设计参数进行双闭环仿真。
得到电流及转速波形如图图:双闭环系统结构图仿真结果如图系统仿真结果图从仿真结果图中可以看到,系统特性完全符合设计指标的要求。
现场调试基本参数调试先将系统反馈系数、反馈极性等基本参数调试完毕。
(1)连接直流开环电路。
(2)熟悉实验台,熟记输出口,尤其是反馈输出口的极性。
(3)将α和β调整到所需值1/300和。
电流环参数整定调试(1)电流闭环,设置两个调节器的限幅(5,5)先将转速调节器搭成反相器,电流调节器按照理论值计算结果搭建。
搭建完成之后,利用示波器测试电流特性,并不能达到预期,电流超调很大并且出现震荡。
(2)给定电压为0启动,然后逐渐增大给定电压至负载电流为1A,调整电流环参数,使系统迅速稳定不震荡。
调整电流环参数之后,得到比较满意的波形,如图电流启动波形(3)逐渐增加负载,调整电流环参数,使得系统迅速稳定,不震荡。
(4)系统稳定后,逐渐改变负载电流,记录转速变化,记录电流环参数。
转速环参数整定调试(1)将转速调节器修改成理论值。
(2)给定电压为0启动,然后逐渐增大给定电压至负载电流为1A,调整转速环参数使得系统稳定不震荡。