当前位置:文档之家› 异质结发展概况

异质结发展概况

异质结发展概况
半导体异质结是由两种禁带宽度不同的半导体材料形成的结。

两种材料禁带宽度的不同以及其他特性的不同使异质结具有一系列同质结所没有的特性,在器件设计中将实现某些同质结不能实现的功能。

例如,在异质结晶体管中用宽带一侧做发射极将得到很高的注入比,因而可获得较高的放大倍数。

早在二十世纪三十年代初期,前苏联列宁格勒约飞技术物理研究所的学者们就开始了对半导体异质结的探索,到了1951年,由Gubanov首先提出了异质结的概念,并进行了一定的理论分析工作,但是由于工艺技术的困难,一直没有实际制成异质结。

20世纪60年代初期,pn结晶体管取得了巨大的成功,人们开始关注对异质结的研究,对异质结的能带图、载流子在异质结中的输运过程以及异质结的光电特性等提出了各种理论模型并做了理论计算。

但是由于制备工艺的原因,未能制备出非常理想的异质结,所以实验特性和理论特性未能达到一致,实验上也未能制备出功能较好的器件。

在20世纪70年代里,异质结的生长工艺技术取得了十分巨大的进展。

液相外延(LPE)、气相外延(VPE)、金属有机化学气相淀积(MO-CVD)和分子束外延(MBE)等先进的材料生长方法相继出现,使异质结的发展逐渐趋于完善。

分子束外延技术不仅能生长出很完整的异质结界面,而且对异质结的组分、掺杂、各层厚度都能在原子量级的范围内进行精确控制。

工艺技术的进步促进了对异质结进一步深入研究,对异质结的宏观性质,如pn结特性、载流子输运过程、光电特性、能带图、结构缺陷、复合和发光等方面的问题,有了更细致的了解。

这对异质结器件的原理和设计都有指导作用。

在异质结器件方面,首先在异质结半导体激光器上取得了突破性进展。

异质结的禁带宽度之差造成了势垒对注入载流子的限制作用和高注入比特性,都有助于实现粒子数反转分布。

两种材料折射率的不同,有助于实现光波导,以减少光在谐振腔以外的损失,因而异质结激光器能在室温下实现连续工作。

1968年江崎和朱兆祥提出了超晶格的思想,自此,对异质结超晶格的研究也逐步深化。

目前,已有多种异质结对做成了超晶格结构,并对他们的电学、光学及输运特性进行了广泛的理论和实验研究。

近几年,对异质
结中的热载流子行为进行了较多的研究,利用载流子在实际空间转移所产生的负阻效应已经做成了震荡器件。

目前,对异质结的研究正在走向高潮,异质结将在半导体器件、光电子器件、集成电路领域发挥重要的作用。

相关主题