当前位置:文档之家› 小型水风光互补系统设计全解

小型水风光互补系统设计全解

毕业设计(论文)题目小型水风光互补系统设计学生姓名学号专业班级指导教师评阅教师完成日期:2015年10月22日毕业设计(论文)开题报告题目:小型水风光互补系统设计学生姓名:专业:电力系统及自动化指导老师:一、课题来源煤、石油、天然气等不可再生能源的使用量在世界各国不断上升,能源危机将成为人类最主要,最大的危机,发展可再生能源越来越成为世界各国的主攻研发方向和竞争目标,谁能领先,谁就会成为未来新贵,新霸主。

电力作为重要的二次清洁能源,它的生产将主要依托可再生能源,从而如何利用可再生能源发电将是一个重大课题。

二、研究目的及意义1、利用水能、风能、太阳能的互补性,可以获得比较稳定的输出,系统有较高的稳定性和可靠性;2、在保证同样供电的情况下,可大大减少储能蓄电池的容量;3、通过合理地设计与匹配,可以基本上由水风光互补发电系统供电,很少或基本不用启动备用电源如柴油机发电机组等,可获得较好的社会效益和经济效益。

三、研究的内容、途径及技术线路水风光互补发电系统主要由水力发电机组、风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成,系统结构图见附图。

该系统是集水能、风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。

1、水力发电部分是利用水能机将水能转换为机械能,通过水力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;2、风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;3、光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电;4、逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的220v交流电,保证交流电负载设备的正常使用。

同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;5、控制部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。

另一方面把多余的电能送往蓄电池组存储。

发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性;6、蓄电池部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。

它将风力发电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。

四、发展趋势中国拥有世界上最多的人口,近年来经济快速增长。

但中国目前的能源结构主要依赖燃煤发电,从而对环境产生了许多负面影响,特别是对空气和水资源的污染。

国际能源机构(IEA)曾预测从2005年到2030年中国新增加的温室气体排放(42%)将和世界上其他国家排放总量(不包括印度,44%)相当。

中国会取代美国成为世界上最大的温室气体排放国。

发展可再生能源技术是减少温室气体排放和改善环境的有效措施之一。

3可再生能源发电技术的应用,既包括大型的发电厂,如我国已经大规模发展的并网风力发电场、正在发展的太阳能并网发电场、也包括独立运作的用于西部无电地区电力建设的集中供电系统(村落电站)和户用系统。

多年来,在我国各级政府的努力下,我国的无电人口已经从2000年的5%左右减少到不足1%,取得了举世瞩目的成就。

但是,不容忽视的是,这些尚未解决用电问题的人口主要分布在西北地区和孤岛,经济欠发达,交通不便利,生产性负载小,延伸电网的经济性非常差,甚至不可能。

另外,我国还有大量的边防哨所,移动通信基站等,远离电网,迫切需要提供问稳定可靠的电力供应。

可再生能源独立电站为满足这些需求提供了现实的可行性。

六、参考文献书籍:1.《光伏发电》杂志2.风力发电技术3.水力发电技术4.电气设备5.直流系统设计6.电气逆变技术7.《电机技术》8.网络资源三峡电力职业学院毕业设计(论文)课题任务书( 2015---- 2016 学年)57目录摘要 (1)前言 (1)1小型光伏发电系统 (1)1.1光伏发电的基本原理 (1)1.2光伏发电系统的组成 (2)1.3 小型独立光伏发电系统 (3)2 小型风力发电系统 (3)2.1风力发电系统的基本原理 (3)2.2风力发电系统的组成 (4)2.3 小型独立风力发电系统 (5)3 小型水力发电系统 (6)3.1 水力发电系统基本原理 (6)3.2水力发电系统的组成 (7)3.3小型独立水力发电系统 (7)4 水风光三能互补系统 (8)4.1 水风光三能互补系统基本原理 (8)4.2水风光三能互补系统的组成 (9)4.3水风光三能互补系统发电 (10)4.3.1水风光三能互补系统发电分析其运行模式 (10)5.水风光优缺点 (13)致谢 (14)参考文献 (15)小型水风光互补系统学生:吴迪指导教师:李玉清(三峡大学职业技术学院)摘要水风光互补发电系统主要由水力发电机组、风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成,系统结构图见附图。

该系统是集水能、风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。

关键词:发电机组、并网发电、基本原理、控制器、逆变器,交直流负载前言本论文主要论述太阳能独立发电系统,风力独立发电系统,水力独立发电系统和水风光互补发电系统的有关重要问题,介绍了各自发电技术的基本原理,各自电力系统的重要组成等,主要的是及水风光互补系统、相关问题分析以及运行管理等知识。

1 小型光伏发电系统本章摘要:光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电。

本章关键词:光伏发电、太阳能、电池板、逆变器、(直流电转换为交流电)1.1 光伏发电的基本原理太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。

这就是光电效应太阳能电池的工作原理。

太阳能发电有两种方式,一种是光-热-电转换方式,另一种是光-电直接转换方式。

(1) 光-热-电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。

前一个过程是光-热转换过程;后一个过程是热-电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。

(2) 光-电直接转换方式该方式是利用光伏效应,将太阳辐射能直接转换成电能,光-电转换的基本装置就是太阳能电池。

太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。

当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。

太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。

1.2系统组成太阳能电池方阵、直流操作箱、光伏监控系统,蓄电池组,充放电控制器,逆变器,交流配电柜1.3光伏独立发电系统太阳能光伏并网发电系统中,太阳能通过太阳能电池组件的光生伏特效应转化为直流电能,再通过光伏并网逆变器中的功率变换及控制系统将直流电能转化为符合电网电能质量要求的交流电。

2 小型风力发电系统本章摘要:风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;关键词:风车叶片、增速器、齿轮箱、塔架、蓄电池充电控制器、逆变器、卸荷器、并网控制器、蓄电池组2.1风力发电的基本原理风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。

风力发电原理是利用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。

2.2风力发电系统组成风力发电电源由风力发电组、支撑发电机组的塔架、蓄电池充电控制器、逆变器、卸荷器、并网控制器、蓄电池组等组成;风力发电机组包括风轮、发电机;风轮中含叶片、轮毂、加固件等组成;它有叶片受风力旋转发电、发电机机头转动等功能。

风速选择:低风速风力发电机能有效提升风力发电机在低风速区域的风能利用,在年平均风速小于3.5m/s,且无台风的地区,推荐选用低风速产品。

2.3 小型独立风力发电系统依据目前的风车技术,大约3m/s的微风速度便可以开始发电。

风力发电的原理说起来非常简单,最简单的风力发电机可由叶片和发电机两部分构成如图下所示。

空气流动的动能作用在叶轮上,将动能转换成机械能,从而推动片叶旋转,如果将叶轮的转轴与发电机的转轴相连就会带动发电机发出电来。

3.小型水力发电系统本章摘要:光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电;关键词:水位、水轮机、传动装置、发电机、整流滤波、变压3.1水力发电系统基本原理水力发电的基本原理是利用水位落差,配合水轮发电机产生电力,也就是利用水的位能转为水轮的机械能,再以机械能推动发电机,而得到电力。

科学家们以此水位落差的天然条件,有效的利用流力工程及机械物理等,精心搭配以达到最高的发电量,供人们使用廉价又无污染的电力。

而低位水通过吸收阳光进行水循环分布在地球各处,从而恢复高位水源。

3.2水力发电系统的组成水工建筑、水轮机、调速器、励磁系统、发电机、变电场,电力网3.3小型独立水力发电系统水力发电系利用河流、湖泊等位于高处具有位能的水流至低处,将其中所含之位能转换成水轮机之动能,再藉水轮机为原动力,推动发电机产生电能。

利用水力(具有水头)推动水力机械(水轮机)转动,将水能转变为机械能,如果在水轮机上接上另一种机械(发电机)随着水轮机转动便可发出电来,这时机械能又转变为电能。

水力发电在某种意义上讲是水的位能转变成机械能,再转变成电能的过程。

因水力发电厂所发出的电力电压较低,要输送给距离较远的用户,就必须将电压经过变压器增高,再由空架输电线路输送到用户集中区的变电所,最后降低为适合家庭用户、工厂用电设备的电压,并由配电线输送到各个工厂及家庭。

4.水风光三能互补系统本章摘要:我们知道,任何能源都有其局限性,通过多种能源互补发电,可实现全天候无间断供电。

而水风光互补发电系统是依照时间、空间的变换而调节采用水、风、太阳能三种不同能源通过必要设备发挥作用转换输出电能,经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节实现了全天候的发电功能,比单用水力、风机和太阳能更经济、科学、实用。

相关主题