实用标准完成时间:2016年XX月XX日摘要材料分析检测技术,是关于材料成分、结构、微观形貌的检测技术及相关理论基础的研究,在众多领域的研究和生产中被广泛应用。
本报告以Mg/Al扩散焊接接头的检测分析为例,分别介绍了扫描电镜(SEM)、X光衍射技术(XRD)、电子探针(EPMA)等材料微结构表征手段和显微硬度、断裂强度测试等材料力学性能测试手段的具体应用。
关键词:材料分析;微观形貌;力学性能AbstractMaterial analysis and testing technology are detection technologies and theoretical foundations about material composition, structure, microstructure. They are widely used in many fields of research and production. This report introduce the detection of Mg/Al diffusion bonding joint as an example, and discusses the application progress of X-ray diffraction technology in material analysis, such as SEM, XRD, EPMA which are used for material microstructure analysis and microhardness, breaking strength which are used for mechanical properties testing. Keywords: materials analysis; microstructure; mechanical properties1 前言在汽车行业推广轻质材料,有利于结构重量的优化,从而降低能源消耗与尾气排放。
铝和镁都具有密度低、比强度和比刚度高的特性,因此常用于结构轻量化的研究。
铝在地壳中含量居第三,仅次于氧和硅,具有低密度(2.70 g/cm3)、较高的比强度和比刚度、良好的耐腐蚀性、良好的导电性等优良性能,其合金在航空航天、汽车、电力行业等已经有广泛应用。
镁在地壳中含量居第八,在宇宙中含量居第九,其密度比铝更低,仅为1.738g/cm3,是目前工业化应用中最轻的结构金属材料;比强度和比刚度均高于铝合金和钢,在不影响强度和刚度的情况下有助于减轻材料的质量;具有良好的减震性和电磁屏蔽能力,在航空航天、汽车、仪表、通讯等行业有很大潜力[1-2]。
随着铝、镁在研究中的深入发展,单一的铝和镁性能已经难以满足实际应用,因此越来越多研究者关注镁铝异种金属焊接。
铝镁焊接连接可以在原有的领域充分发挥两种金属各自的优异性能,还可以集多功能于一身的结构材料、功能材料,将运用于更多的科学领域。
铝镁异种金属焊接的主要问题在于母材材料表面易氧化,电阻率、热导率、线膨胀系数较大,易产生脆性的金属间化合物。
铝镁异种材料焊接的研究已经成为焊接领域研究的热点和难点[3-4]。
扩散焊接是在一定的压力和温度下,母材待焊面发生塑性变形紧密贴合,经过原子扩散以达到冶金结合的焊接方法[5]。
相比熔焊,扩散焊接由于对温度和压力的要求不高,不会产生凝固裂纹及高的变形应力等焊接缺陷,在材料的焊接方面具有极大的优势。
但经过原子的扩散迁移,在接头界面附近形成冶金结合的扩散层。
这种扩散层的组织结构将决定接头的连接性能,所以采用材料微结构分析方法研究Al/Mg接头界面微观组织。
采用金相显微镜、扫描电镜观察扩散连接接头的结构;采用X射线衍射分析、电子探针显微分析表征接头成分;采用力学测试、硬度测试接头性能。
探究不同连接温度、压力、时间对接头界面组织结构与连接性能的影响,确定最佳的扩散连接工艺参数。
本研究对Al/Mg金属扩散连接在实际生产中的应用推广有重大意义。
1.1 材料微观组织分析方法材料性能的本质影响因素是其微观结构,所以材料微结构分析原理与方法是进行材料学研究的最基本工具。
针对Mg/Al扩散焊接接头界面微组织的检测分析,主要用到扫面电镜(SEM)、X射线衍射(XRD)和电子探针(EPMA)[6]。
1.1.1 扫描电子显微镜扫描电镜(SEM)是一种利用高能电子束轰击样品表面激发出各种物理信息,通过对这些有效信息的搜集、放大、成像,研究材料的微观组织形貌。
扫描电镜是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术,能直接利用样品表面的物质特性进行微观成像[7]。
扫描电子显微镜的出现和不断完善弥补光学显微镜和透射电子显微镜的某些不足,它具备的优点是:1)有较高的放大倍数,20-20万倍之间连续可调;2)景深大,视野广,可立体成像,直接观察各种试样凹凸不平表面的细微结构;3)试样制备简单。
目前的扫描电镜都配有X射线能谱仪装置,可同时进行微观组织性貌的观察和微区成分分析,具有极高的应用价值。
扫描电子显微镜的制造依据是电子与物质的相互作用。
当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征X 射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射(见图1)。
常用的物理信号有:图1 扫描电镜激发的物理信号1)二次电子:指被入射电子轰击出来的核外电子。
当入射电子轰击原子后,能量传递给核外电子使其脱离原子核的束缚成为自由电子。
如果这种散射过程发生在样品表层附近,那些能量大于材料逸出功的自由电子会从样品表面逸出,变成真空中的自由电子,即二次电子。
它对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。
二次电子的分辨率较高,一般可达到5-10nm。
2)背散射电子:指高能入射电子撞击样品后反射回来的部分电子。
背散射电子束成像分辨率一般为50-200nm(与电子束斑直径相当),其产额随原子序数的增加而增加。
利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。
3)俄歇电子:指由原子层电子跃迁释放出来的能量不是以X射线形式释放而是传递给核外另一电子,使其脱离核的束缚变为俄歇电子。
因为每种原子都由自己特定的壳层能量,所以它们的俄歇电子能量也各有特征值,能量在50-1500ev 围。
因此,试样表层发出的俄歇电子信号适用于表层化学成分分析。
4)特征X射线:指原子的层电子受到激发后在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射。
X射线一般在试样的500nm-5mm深处发出。
结合配备的X射线能谱仪,可分析材料的微区成分。
扫描电子显微镜的原理结构由三极电子枪发出的电子束经栅极静电聚焦后的电光源,在高电压加速下经过2-3个电磁透镜所组成的电子光学系统,在试样表面聚焦。
末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。
高能电子束与样品表面作用激发的物理信息分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。
由于经过扫描线圈上的电流与显像管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显像管荧光屏上相应的亮点对应,其亮度与激发后的电子能量成正比。
再利用光栅扫描成像,获得完整形貌图片。
整个原理结构图,如图2所示。
图2 扫描电镜的原理结构示意图1.1.2 X射线衍射每一种结晶物质,都有其特定的晶体结构,包括点阵类型、晶面间距等参数。
当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射[8]。
衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体部的原子分配规律,相应的原理示意图如图3所示。
图3 X射线衍射原理图1)物相分析:每种晶体由于其独特的结构都具有与之相对应的X射线衍射特征谱,这是X射线衍射物相分析的依据。
将待测样品的衍射图谱和各种已知单相标准物质的衍射图谱对比,从而确定物质的相组成。
确定相组成后,根据各相衍射峰的强度正比于该组分含量(需要做吸收校正者除外),就可对各种组分进行定量分析。
2)点阵参数的测定:测定点阵参数在研究固态相变、确定固溶体类型、测定固溶体溶解度曲线、测定热膨胀系数等方面都得到了应用。
通过X射线衍射线位置的测定而获得的,通过测定衍射花样中每一条衍射线的位置均可得出一个点阵常数值。
3)微观应力的测定:材料的微观残余应力是引起衍射线线形宽化的主要原因,因此衍射线的半高宽即衍射线最大强度一半处的宽度是描述微观残余应力的基本参数。
当一束X射线入射到具有微观应力的样品上时,由于微观区域应力取向不同,各晶粒的晶面间距产生了不同的应变,即在某些晶粒中晶面间距扩,而在另一些晶粒中晶面间距压缩,结果使其衍射线并不像宏观应力所影响的那样单一地向某一方向位移,而是在各方向上都平均地作了一些位移,总的效应是导致衍射线漫散宽化。
X射线衍射仪以布拉格实验装置为原型,融合了机械与电子技术等多方面的成果。
衍射仪由X射线发生器、X射线测角仪、辐射探测器和辐射探测电路4个基本部分组成,是以特征X射线照射多晶体样品,并以辐射探测器记录衍射信息的衍射实验装置,其结构示意图见图4。
衍射仪法以其方便、快捷、准确和可以自动进行数据处理等特点在许多领域中取代了照相法,现在已成为晶体结构分析等工作的主要方法。
图4 X射线衍射仪结构示意图1.1.3 电子探针电子探针(见图5)是一种现代微区化学成分分析手段,利用经过加速和聚焦的极窄电子束为探针,激发试样中某一微小区域,使其发出特征X射线,测定该X射线的波长和强度,即可对该微区的元素作定性或定量分析[9]。
电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析,以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区浓度分布。
图5 电子探针由于电子探针技术具有操作迅速简便(相对复杂的化学分析方法而言)、实验结果的解释直截了当、分析过程不损坏样品、测量准确度较高等优点,故在冶金、地质、电子材料、生物、医学、考古以及其它领域中得到日益广泛地应用,是矿物测试分析和样品成分分析的重要工具。
1.2 材料力学性能分析1.2.1 材料硬度测试硬度是指材料局部抵抗硬物压入其表面的能力[10]。
材料的硬度分析主要有3类:1)划痕硬度:主要用于比较不同矿物的软硬程度,方法是选一根一端硬一端软的棒,将被测材料沿棒划过,根据出现划痕的位置确定被测材料的软硬。