当前位置:文档之家› 2020年高考物理《电磁学综合计算题》专题训练及答案解析

2020年高考物理《电磁学综合计算题》专题训练及答案解析

2020年高考物理《电磁学综合计算题》专题训练1.如图所示,一对加有恒定电压的平行金属极板竖直放置,板长、板间距均为d .在右极板的中央有个小孔P ,小孔右边半径为R 的圆形区域内存在方向垂直纸面向里的匀强磁场,区域边界刚好与右极板在小孔P 处相切.一排宽度也为d 的带负电粒子以速度v 0竖直向上同时进入两极板间后,只有一个粒子通过小孔P 进入磁场,其余全部打在右极板上,且最后一个到达极板的粒子刚好打在右极板的上边缘.已知这排粒子中每个粒子的质量均为m 、带电荷量大小均为q ,磁场的磁感应强度大小为2mv 0qR,不计粒子的重力及粒子间的相互作用力.求:(1)板间的电压大小U ;(2)通过小孔P 的粒子离开磁场时到右极板的距离L ; (3)通过小孔P 的粒子在电场和磁场中运动的总时间t 总.【解析】 (1)依题意,从左极板下边缘射入的粒子恰好打在右极板的上边缘 在竖直方向上有t =d v 0在水平方向上有a =qE m =qU md ,d =12at 2联立解得U =2mv 2q.(2)从小孔P 射入磁场的粒子,在电场中的运动时间t 1=d2v 0经过小孔P 时,水平分速度v 1=at 1=v 0进入磁场时的速度大小v =v 20+v 21=2v 0,速度方向与右极板的夹角θ=π4设粒子在磁场中做匀速圆周运动后从Q 点离开磁场,其轨迹如图所示,轨迹圆心在O ′点,则qvB =m v 2r ,得r =mv qB =2mv 0qB=R 由几何关系可知粒子射出磁场时的速度方向竖直向下,由图知L =r +r cos θ=(1+22)R . (3)从小孔P 飞出的粒子在磁场中偏转的角度α=3π4,粒子在磁场中运动的时间t 2=3π42π·2πr v =32πR 8v 0通过小孔P 的粒子在电场和磁场中运动的总时间t 总=t 1+t 2=d 2v 0+32πR8v 0. 【答案】 (1)U =2mv 20q (2)(1+22)R (3)d 2v 0+32πR8v 02.如下图甲所示,一边长L =0.5 m ,质量m =0.5 kg 的正方形金属线框,放在光滑绝缘的水平面上,整个装置处在方向竖直向下、磁感应强度B =0.8 T 的匀强磁场中.金属线框的一个边与磁场的边界MN 重合,在水平拉力作用下由静止开始向右运动,经过t =0.5 s 线框被拉出磁场.测得金属线框中的电流I 随时间变化的图象如图乙所示,在金属线框被拉出磁场的过程中.(1)求通过线框导线截面的电量及该金属框的电阻; (2)写出水平力F 随时间t 变化的表达式;(3)若已知在拉出金属框的过程中水平拉力做功1.10 J ,求此过程中线框产生的焦耳热. 【解析】(1)根据题图乙知,在t =0.5 s 时间内通过金属框的平均电流I =0.50 A ,于是通过金属框的电量q =I t =0.25 C.由平均感应电动势E =BL 2t ,平均电流I =E R ,通过金属框的电量q =I t ,得q =BL 2R ,于是金属框的电阻R =BL 2q=0.80 Ω.(2)由题图乙知金属框中感应电流线性增大,说明金属框运动速度线性增加,即金属框被匀加速拉出磁场.又知金属框在t =0.5 s 时间内运动距离L =0.5 m ,由L =12at 2得加速度a =2L t2=4 m/s 2.由图乙知金属框中感应电流随时间变化规律为I =kt ,其中比例系数k =2.0 A/s.于是安培力F A 随时间t 变化规律为F A =BIL =kBLt由牛顿运动定律得F -F A =ma ,所以水平拉力F =F A +ma =ma +kBLt代入数据得水平拉力随时间变化规律为F =2+0.8t (单位为“N”)(3)根据运动情况知金属框离开磁场时的速度v =2aL =2 m/s.由能量守恒知,此过程中金属框产生的焦耳热Q =W F -12mv 2=0.1 J.【答案】(1)0.25 C 0.80 Ω (2)F =2+0.8t (单位为“N”) (3)0.1 J3.如图所示,A 、B 间存在与竖直方向成45°角斜向上的匀强电场E 1,B 、C 间存在竖直向上的匀强电场E 2,A 、B 的间距为1.25 m ,B 、C 的间距为3 m ,C 为荧光屏.一质量m =1.0×10-3kg ,电荷量q =+1.0×10-2C 的带电粒子由a 点静止释放,恰好沿水平方向经过b 点到达荧光屏上的O 点.若在B 、C 间再加方向垂直于纸面向外且大小B =0.1 T 的匀强磁场,粒子经b 点偏转到达荧光屏的O ′点(图中未画出).g 取10 m/s 2.求:(1)E 1的大小;(2)加上磁场后,粒子由b 点到O ′点电势能的变化量及偏转角度.【解析】(1)粒子在A 、B 间做匀加速直线运动,竖直方向受力平衡,则有qE 1cos 45°-mg =0 ①解得E 1= 2 N/C =1.4 N/C(2)粒子从a 到b 的过程中,由动能定理得:qE 1d AB sin 45°=12mv 2b②解得v b =5 m/s加磁场前粒子在B 、C 间做匀速直线运动,则有:qE 2=mg ③加磁场后粒子在B 、C 间做匀速圆周运动,如图所示:由牛顿第二定律得:qv b B =m v 2bR④解得:R =5 m由几何关系得:R 2=d 2BC +(R -y )2⑤解得:y =1.0 m粒子在B 、C 间运动时电场力做的功为:W =-qE 2y =-mgy =-1.0×10-2 J⑥由功能关系知,粒子的电势能增加了1.0×10-2J 设偏转角度为θ,则sin θ=d BCR=0.6 ⑦解得:θ=37°【答案】 (1)1.4 N/C (2)1.0×10-2J 37°4.控制带电粒子的运动在现代科学实验、生产生活、仪器电器等方面有广泛的应用.现有这样一个简化模型:如图所示,y 轴左、右两边均存在方向垂直纸面向里的匀强磁场,右边磁场的磁感应强度始终为左边的2倍.在坐标原点O 处,一个电荷量为+q 、质量为m 的粒子a ,在t =0时以大小为v 0的初速度沿x 轴正方向射出,另一与a 相同的粒子b 某时刻也从原点O 以大小为v 0的初速度沿x 轴负方向射出.不计粒子重力及粒子间的相互作用,粒子相遇时互不影响.(1)若a 粒子能经过坐标为(32l ,12l )的P 点,求y 轴右边磁场的磁感应强度B 1; (2)为使粒子a 、b 能在y 轴上Q (0,-l 0)点相遇,求y 轴右边磁场的磁感应强度的最小值B 2;(3)若y 轴右边磁场的磁感应强度为B 0,求粒子a 、b 在运动过程中可能相遇的坐标值. 【解析】(1)设a 粒子在y 轴右侧运动的半径为R 1,由几何关系有(R 1-12l )2+(32l )2=R 21甲由于B 1qv 0=m v 20R 1解得B 1=mv 0ql(2)B 2最小,说明Q 点是a 、b 粒子在y 轴上第一次相遇的点,由图乙可知,a 、b 粒子同时从O 点出发,且粒子在y 轴右侧运动的圆周运动半径乙R 2=l 02又B 2qv 0=m v 20R 2解得B 2=2mv 0ql 0(3)由图丙可见,只有在两轨迹相交或相切的那些点, 才有相遇的可能性,所以有y 轴上的相切点和 y 轴左侧的相交点.经分析可知,只要a 、b 粒子从O 点出发的时间差满足一定的条件,这些相交或相切的点均能相遇.丙粒子在y 轴右侧的运动半径r 1=mv 0B 0q 粒子在y 轴左侧的运动半径r 2=2mv 0B 0q①y 轴上的相切点坐标为 [0,-2kmv 0B 0q](k =1,2,3,…)②y 轴左侧的相交点相遇 由丙图可知,OA =AC =OC =r 2 可得x A =-r 2sin 60°=-3mv 0B 0qy A =-r 2cos 60°=-mv 0B 0qy 轴左侧的相遇点的坐标[-3mv 0B 0q,-(2n -1)mv 0B 0q](n =1,2,3,…)【答案】(1)mv 0ql (2)2mv 0ql 0(3)[0,-2kmv 0B 0q](k =1,2,3…)和[-3mv 0B 0q,-(2n -1)mv 0B 0q](n =1,2,3,…)5.某课外探究小组的同学们利用学校实验室内的绝缘材料自制了一条细导轨OABCDP(如图所示),其中OAB 段和DP 段为粗糙的水平导轨,B 点和D 点在同一水平面上但不重合,P端离沙地的高度h =0.8 m ;BCD 段为圆环形导轨,半径R =0.5 m ,其中BC 段光滑、CD 段很粗糙.将一个中心有孔的钢球(孔径略大于细导轨直径)套在导轨端点O 处,钢球的带电荷量q =+3.7×10-4C ,质量m =0.2 kg .某次实验中,在导轨OA 段加上水平向右的、场强E =1×104V /m 的匀强电场时,钢球即开始沿导轨运动,经过C 点时速度为3 m /s ,最终恰好停在P 点.已知AB 段长L 1=1.0 m ,DP 段长L 2=1.0 m ,钢球与水平导轨间的动摩擦因数均为μ=0.2.(1)求钢球经过C 点时对导轨的弹力; (2)求OA 段导轨的长度d ;(3)为了让钢球从导轨右端抛出,并且落在沙地上的位置最远,需在P 端截去多长的一段水平导轨?钢球落在沙地上的最远位置与D 点的水平距离多大?【解析】(1)在C 点,设导轨对钢球的弹力方向为竖直向下, 则F N +mg =m v 2CR代入数据解得F N =1.6 N由牛顿第三定律知,钢球对导轨的弹力也为1.6 N ,方向竖直向上 (2)O→C 过程,qEd -μmg(d+L 1)-mg·2R=12mv 2C代入数据可解得d =1 m(3)设导轨右端截去长度为x ,滑块离开导轨平抛时的初速度为v 0,落在沙地上的位置与D 点的水平距离为s ,则v 20=2μgx,h =12gt 2,s =(L 2-x)+v 0t由以上各式代入数据可得s =1-x +0.8x当x =0.4,即x =0.16 m 时,s 有最大值s m =1.16 m .【答案】(1)1.6 N ,方向竖直向上 (2)1 m (3)0.16 m 1.16 m6.如图所示,两根足够长且平行的光滑金属导轨所在平面与水平面成α=53°角,导轨间接一阻值为3 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线间有一与导轨所在平面垂直的匀强磁场,磁场区域的宽度为d =0.5 m .导体棒a 的质量为m 1=0.1 kg 、电阻为R 1=6 Ω;导体棒b 的质量为m 2=0.2 kg 、电阻为R 2=3 Ω,它们分别垂直导轨放置并始终与导轨接触良好.现从图中的M 、N 处同时将a 、b 由静止释放,运动过程中它们都能匀速穿过磁场区域,且当a 刚出磁场时b 正好进入磁场.(sin 53°=0.8,cos 53°=0.6,g 取10 m/s 2,a 、b 电流间的相互作用不计),求:(1)在b 穿越磁场的过程中a 、b 两导体棒上产生的热量之比; (2)在a 、b 两导体棒穿过磁场区域的整个过程中,装置上产生的热量; (3)M 、N 两点之间的距离.【解析】(1)由焦耳定律得,Q =I 2Rt ,得Q 1Q 2=I 21R 1t I 22R 2t, 又根据串并联关系得,I 1=13I 2,解得:Q 1Q 2=29(2)设整个过程中装置上产生的热量为Q 由Q =m 1g sin α·d +m 2g sin α·d ,可解得Q =1.2 J(3)设a 进入磁场的速度大小为v 1,此时电路中的总电阻R 总1=(6+3×33+3) Ω=7.5 Ω由m 1g sin α=B 2L 2v 1R 总1和m 2g sin α=B 2L 2v 2R 总2,可得 v 1v 2=m 1R 总1m 2R 总2=34又由v 2=v 1+a d v 1,得v 2=v 1+8×0.5v 1由上述两式可得v 21=12(m/s)2,v 22=169v 21M 、N 两点之间的距离Δs =v 222a -v 212a =712m【答案】(1)29 (2)1.2 J (3)712m7.如图所示,两间距为l 的足够长的光滑平行金属导轨固定在绝缘水平面上,整个空间存在竖直向下的磁场,虚线将磁场分成两部分,虚线左、右两侧的磁感应强度大小分别为B 1、B 2,且B 1=2B 2.两质量均为m 的导体棒甲、乙垂直导轨静止地放在虚线的左侧,导体棒甲、乙的阻值分别为R 1、R 2.现给导体棒甲一水平向右的冲量I ,两导体棒开始运动,整个过程中两导体棒始终与导轨垂直且接触良好,两导轨的电阻可忽略不计.(1)求导体棒甲开始运动时电路中的电流.(2)如果导体棒乙运动到虚线前达到稳定状态,求导体棒乙稳定时的速度大小. (3)导体棒乙越过虚线后,经过一段时间再次达到稳定状态,假设此时导体棒甲刚好运动到虚线.求导体棒乙从越过虚线到再次稳定的过程中,整个电路产生的焦耳热.【解析】(1)设导体棒甲得到冲量I 时的速度为v 0,导体棒甲产生的感应电动势为E ,回路中的电流为i ,则由动量定理得I =mv 0由法拉第电磁感应定律得E =B 1lv 0 由闭合电路欧姆定律得i =ER 1+R 2, 联立得i =B 1lI(R 1+R 2)m.(2)导体棒甲和导体棒乙在虚线左侧磁场中运动过程中所受安培力大小相等、方向相反,二者组成的系统所受的合力为零,故两导体棒组成的系统动量守恒.导体棒甲和导体棒乙在虚线左侧达到稳定时两导体棒速度相等,导体棒乙速度达到最大,假设最大速度为v m ,此时根据动量守恒定律有mv 0=2mv m ,解得v m =I 2m.(3)导体棒乙刚进入虚线右侧的磁场中时,设导体棒甲产生的感应电动势为E 1,导体棒乙产生的感应电动势为E 2,则由法拉第电磁感应定律得E 1=B 1lv m 、E 2=B 2lv m又B 1=2B 2,所以E 1=2E 2导体棒乙越过虚线后,回路中立即产生感应电流,在安培力作用下导体棒甲做减速运动,导体棒乙做加速运动,直至两棒产生的感应电动势大小相等时,二者做匀速运动.此时设导体棒甲的速度为v a ,导体棒乙的速度为v b ,这一过程所用的时间为t.此时有B 1lv a =B 2lv b解得v b =2v a设在t 时间内通过导体棒甲、乙的电流的平均值为I -,以水平向右为正方向.对导体棒甲,根据动量定理有,-B 1I -lt =mv a -mv m 对导体棒乙,根据动量定理有,B 2I -lt =mv b -mv m 联立解得v a =35v m ,v b =65v m设导体棒乙越过虚线后,整个电路中产生的焦耳热为Q ,根据能量守恒定律有 Q =2×12mv 2m -12mv 2a -12mv 2b联立得Q =I 240m.【答案】(1)B 1lI (R 1+R 2)m (2)I 2m (3)I240m8.如图所示,以O 为圆心、半径为R 的圆形区域内存在垂直圆面向里、磁感应强度为B 的匀强磁场,一粒子源位于圆周上的M 点,可向磁场区域内垂直磁场沿各个方向发射质量为m 、电荷量为-q 的粒子,不计粒子重力,N 为圆周上另一点,半径OM 和ON 间的夹角为θ,且满足tan θ2=0.5.(1)若某一粒子以速率v 1=qBRm,沿与MO 成60°角斜向上方射入磁场,求此粒子在磁场中运动的时间;(2)若某一粒子以速率v 2,沿MO 方向射入磁场,恰能从N 点离开磁场,求此粒子的速率v 2;(3)若由M 点射入磁场各个方向的所有粒子速率均为v 2,求磁场中有粒子通过的区域面积.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,设轨迹半径为r 1,由牛顿第二定律可得qv 1B =mv 21r 1解得:r 1=mv 1qB=R 粒子沿与MO 成60°角方向射入磁场,设粒子从区域边界P 射出,其运动轨迹如图甲所示.由图中几何关系可知粒子轨迹所对应的圆心角为α=150°甲方法1:故粒子在磁场中的运动时间t =αr 1v 1=mαqB =5m π6qB方法2:粒子运动周期T =2πm Bq粒子在磁场中的运动时间t =150°360°T 得t =5m π6qB(2)粒子以速率v 2沿MO 方向射入磁场,在磁场中做匀速圆周运动,恰好从N 点离开磁场,其运动轨迹如图乙,设粒子轨迹半径为r 2 ,由图中几何关系可得:r 2=R tan θ2=12R乙由牛顿第二定律可得qv 2B =mv 22r 2解得粒子的速度v 2=qBr 2m =qBR 2m(3)粒子沿各个方向以v 2进入磁场做匀速圆周运动时的轨迹半径都为r 2,且不变.由图丙可知,粒子在磁场中通过的面积S 等于以O 3为圆心的扇形MO 3O 的面积S 1、以M 为圆心的扇形MOQ 的面积S 2和以O 点为圆心的圆弧MQ 与直线MQ 围成的面积S 3之和.丙S 1=12π(R 2)2=πR 28 S 2=16πR 2S 3=16πR 2-12×R ×R 2tan 60°=16πR 2-34R 2 则S =1124πR 2-34R 2. 【答案】见解析9.如图所示,间距为L 的平行且足够长的光滑导轨由两部分组成:倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r 的定值电阻.质量为m 、电阻也为r 的金属杆MN 垂直导轨跨放在导轨上,在倾斜导轨区域加一垂直导轨平面向下、磁感应强度大小为B 的匀强磁场;在水平导轨区域加另一垂直导轨平面向下、磁感应强度大小也为B 的匀强磁场.闭合开关S ,让金属杆MN 从图示位置由静止释放,已知金属杆运动到水平导轨前,已达到最大速度,不计导轨电阻且金属杆始终与导轨接触良好,重力加速度为g .求:(1)金属杆MN 在倾斜导轨上滑行的最大速率v m ;(2)金属杆MN 在倾斜导轨上运动,速度未达到最大速度v m 前,当流经定值电阻的电流从零增大到I 0的过程中,通过定值电阻的电荷量为q ,求这段时间内在定值电阻上产生的焦耳热Q ;(3)金属杆MN 在水平导轨上滑行的最大距离x m .【解析】(1)金属杆MN 在倾斜导轨上滑行的速度最大时,其受到的合力为零,对其受力分析,可得:mg sin θ-BIL =0根据欧姆定律可得:I =BLv m 2r解得:v m =2mgr sin θB 2L2 (2)设在这段时间内,金属杆运动的位移为x ,由电流的定义可得:q =I Δt根据法拉第电磁感应定律、欧姆定律得:I =B ΔS 2r Δt =BLx 2r Δt解得:x =2qr BL设电流为I 0时金属杆的速度为v 0,根据法拉第电磁感应定律、欧姆定律,可得:I 0=BLv 02r此过程中,电路产生的总焦耳热为Q 总,由功能关系可得:mgx sin θ=Q 总+12mv 20 定值电阻产生的焦耳热Q =12Q 总 解得:Q =mgqr sin θBL -mI 20r 2B 2L 2 (3)由牛顿第二定律得:BIL =ma由法拉第电磁感应定律、欧姆定律可得:I =BLv 2r可得:B 2L 22r v =m Δv ΔtB 2L 22rv Δt =m Δv , 即B 2L 22rx m =mv m 得:x m =4m 2gr 2sin θB 4L 4 【答案】(1)2mgr sin θB 2L 2 (2)mgqr sin θBL -mI 20r 2B 2L 2 (3)4m 2gr 2sin θB 4L 4 10.如图所示,半径为L 1=2 m 的金属圆环内上、下半圆各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B 1=10πT .长度也为L 1、电阻为R 的金属杆ab ,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a 端沿逆时针方向匀速转动,角速度为ω=π10rad/s.通过导线将金属杆的a 端和金属环连接到图示的电路中(连接a 端的导线与圆环不接触,图中的定值电阻R 1=R ,滑片P 位于R 2的正中央,R 2的总阻值为4R ),图中的平行板长度为L 2=2 m ,宽度为d =2 m .图示位置为计时起点,在平行板左边缘中央处刚好有一带电粒子以初速度v 0=0.5 m/s 向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B 2,左边界为图中的虚线位置,右侧及上下范围均足够大.(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射的影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力)求:(1)在0~4 s 内,平行板间的电势差U MN ;(2)带电粒子飞出电场时的速度;(3)在上述前提下若粒子离开磁场后不会第二次进入电场,则磁感应强度B 2应满足的条件.【解析】(1)金属杆产生的感应电动势恒为E =12B 1L 21ω=2 V由串并联电路的连接特点知: E =I ·4R,U 0=I ·2R =E 2=1 V, T 1=2πω=20 s 由右手定则知:在0~4 s 时间内,金属杆ab 中的电流方向为b →a ,则φa >φb , 则在0~4 s 时间内,φM <φN ,U MN =-1 V(2)粒子在平行板电容器内做类平抛运动,在0~T 12时间内,水平方向L 2=v 0·t 1,得t 1=L 2v 0=4 s < T 12 竖直方向d 2=12v y t 1 解得:v y =0.5 m/s则粒子飞出电场时的速度大小v =v 20+v 2y =22m/s tan θ=v yv 0=1,所以该速度与水平方向的夹角 θ=45° (3)粒子在匀强磁场中做匀速圆周运动,由B 2qv =m v 2r, 得r =mv B 2q由几何关系及粒子在磁场中运动的对称性可知:2r >d 时离开磁场后不会第二次进入电场粒子在平行板中加速得:v y =at 1 ,又a =Eq m ,E =U NM d 解得:qm =0.25 C/kg,综合得 B 2<2mv dq =2×42×22T =2 T 【答案】(1)-1 V (2)22m/s 与水平方向的夹角 θ=45° (3)B 2< 2 T 11.华裔科学家丁肇中负责的AMS 项目,是通过“太空粒子探测器”探测高能宇宙射线粒子,寻找反物质。

相关主题