第二章气相色谱分析例1:在一根90米长的毛细管色谱柱上测得各组分保留时间:正十四烷15.6min ;正十五烷21.95min ;正十六烷31.9min 。
计算色谱柱的死时间及载气平均速度。
解:方法一:同系物保留值之间存在以下关系:,11,r rn n n n=-+ ''''()(1)(1)()//R n R n R n R n t t t t -+=以()R M t t -代替'Rt 可推导出: 2(1)(1)()(1)()()(1)()()R n R n R n M R n R n R n R n t t t t t t t t -++--=---将正十四烷、正十五烷、正十六烷的保留时间代入公式:231.915.621.95min (31.921.95)(21.9515.6)M t ⨯-=--- 得4.40minM t = 载气的平均流速/Mu L t -=, 即90100/(4.4060)/34.09/u cm s cm s -=⨯⨯=方法二:直接用甲烷测定死时间。
即以甲烷的保留时间作为死时间。
例2:在一根2m 长的色谱柱上,A 、B 、C 、三组分的保留时间分别为2.42min 、3.21min 、5.54min ;峰宽分别为0.12min 、0.21min 、0.48min 。
另测得甲烷的保留时间为1.02min 。
求:(1)A 、B 、C 组分的调整保留时间;(2)A 与B 、B 与C 组分的相对保留时间; (3)A 、B 、C 组分的容量因子;(4)A 、B 、C 组分的有效塔板数和塔板高度; (5)A 与B 、B 与C 组分的分离度;解:(1)'(1)(1)R R M tt t =-'()()(2.42 1.02)min 1.40min R A R A M t t t =-=-= '()()(3.21 1.02)min 2.19min R B R B M tt t =-=-= '()()(5.54 1.02)min 4.52min R C R C M tt t =-=-=(2) ''2,1(2)(1)/R R r t t =, 2.19/1.40 1.56B A r ==, 4.52/2.19 2.06C B r ==(3) '1(1)/R M k t t ='()/ 1.40/1.02 1.37A R A M k t t ==='()/ 2.19/1.02 2.15B R B M k t t ==='()/ 4.52/1.02 4.43CR C M k t t ===(4)'216(),/R eff t n H L nw=='()22()1.416()16()2178,0.12R A eff A A t n w ===()/2100/21780.092A A eff A H L n cm ==⨯= '()22()2.1916()16()17400.21R B eff B B t n w ===()/2100/17400.115B B eff B H L n cm cm ==⨯= '()22()4.5216()16()14190.48R C eff C C t n w ===()/2100/14190.141C C eff C H L n cm ==⨯=(5)(2)(1)212()R R t t Rw w -=+()(),2()2(3.21 2.42)4.790.210.12R B R A A BB At t R w w -⨯-===++()(),2()2(5.54 3.21) 6.750.480.21R C R B B CC Bt t R w w -⨯-===++第三章 高效液相色谱分析例1:高效液相色谱法分离两个组分,色谱柱长30cm 。
已知在实验条件下,色谱柱对组分2的柱效能为26800m -1,死时间 1.5min M t =.组分的保留时间124.15min, 4.55min.R R t t ==计算:(1)两组分在固定相中的保留时间12'',;R R t t (2)两组分的分配比12;,k k (3)选择性因子2,1;r(4)两组分的分离度R ,并判断两个组分是否完全分离。
解:(1)11'(4.15 1.50)min 2.65min R R M t t t =-=-= 22'(4.55 1.50)min 3.05min RR M t t t =-=-=(2)因为(1)RM t t k =+ 'RR M t t t =- 所以 R MMt t k t -=故114.15 1.5 1.771.5R MMt t k t --===22 4.55 1.50 2.031.50R MMt t k t --===(3)2211 2.03 1.151.77k r k ===(4) 30cm 长色谱柱的理论塔板数n 为126800308040100m n cm cm-=⨯=根据分离度2,122,1211r k R r k -=⨯⨯+1.1512.03 2.01.15 2.031R -⎛⎫⎛⎫=⨯⨯= ⎪ ⎪+⎝⎭⎝⎭因R>1.5,故两分组已完全分离。
例2:已知A 、B 两分组的相对保留值. 1.1B Ar =,如果要是A 、B 到完全分离(R=1.5,H=0.1.cm ),问需要多长的色谱柱?解: 根据22..16()1B A B A r n R r =-及L H n =⨯ 可求得 221.116 1.543561.11n ⎛⎫=⨯⨯= ⎪-⎝⎭因此,所需色谱柱长0.104356435.6 4.5L cm cm m =⨯=≈第四章 电位分析法例1: 25°C 时,用氯电极测定含盐番茄汁中的Cl —含量。
取10.0ml 番茄汁测得电动势为-17.2mv ,若向其中加入0.100mL 0.100mol/L 的NaCl 溶液,再测电动势为-35.5mv 。
计算每升番茄汁中所含Cl —的毫克数。
解:1[101]E SX C C ∆-=∆-[35.5(17.2)]18.1E mv mv ∆=---=-0.01810.3070.059E S ∆-==30.307141.0010(101)/9.7310/X C mol L mol L ---=⨯-=⨯49.731035.5/0.0345/34.5/g L g L mg L -⨯⨯==例2: 25°C 时,用0.100mol/L 4Ce +溶液电位滴定20.00mL0.100mol/L2Sn +溶液。
用Pt 电极(正极)和饱和甘汞电极(负极)组成电池,计算:(3) 化学计量点时电池的电动势; (4) 加入10.00mL 4Ce +时的电动势。
已知0.24sceV ϕ= 43/ 1.61Ce Ce V ϕ++= 42/0.15Sn Sn V ϕ++=解:(1)1 1.61+20.15=0.6371+2V V ϕ⨯⨯=计量点(2)244322Sn Ce Sn Ce +++++→+溶液中2Sn +量:20.000.100 2.00mmol mmol ⨯=加入4Ce+量:10.000.100 1.00mmol mmol ⨯=余2Sn +量:(2.00 1.00/2) 1.50mmol mmol -=生成4Sn +量:0.500mmol 用42/SnSn ++电对计算,0.0590.500=[0.15+lg 0.24]0.1042 1.50E V V -=-电池第五章 伏安分析法例1:用极谱法测定MgCl 2溶液中的微量Cd 2+取试液5.0ml ,加入0.04%明胶5.0ml ,用水稀释至50ml ,通N 2 5min~10min 后记录极谱图,得波高50A μ。
另取试液5.0ml ,加入0.5mg/ml Cd 2+标准溶液1.0ml ,混合均匀,再按上述测定步骤同样处理,记录极谱图,波高为90A μ.计算试样中Cd 2+的含量。
解:根据极谱法的定量公式,扩散电流(即极谱波高)与Cd 2+的浓度成正比:d i kc =样品加标前:1150,/d x i A C C mg mL μ== 样品加标后:290d i A μ=2( 5.00.5 1.0)/6/x C C mg ml =⨯+⨯ 解以下方程组得:50 5.0/5090( 5.00.5 1.0)/50x x KC K C =⨯⎧⎨=⨯+⨯⎩ 得试样中的Cd 2+的含量C x =0.125mg/mL例2:用阳极溶出伏安法测定水样中的222,,Pb Cd Cu +++含量。
取水样4.00ml ,加入到盛有46.0ml 支持电解质溶液的电解池中,通N 2 2min ,富集1min ,静置30秒后将工作电极的电位向正方向扫描,测得222,,Pb Cd Cu +++的溶出峰高分别为12mm ,26mm ,18mm 。
在上述溶液中加入0.10ml22(10.00/),(2.00/),Pb mg L Cd mg L ++2(5.00/)Cu mg L +的标准溶液,同样进行富集和溶出,测量到溶出峰的峰高分别为20mm ,45mm ,32mm ,计算水样中的222,,Pb Cd Cu +++的含量。
解:根据溶出伏安法的定量公式,溶出峰电流(即溶出峰高)与被测离子浓度成正比:h kc = 设被测离子的浓度为x C mg/L,则加标前电解池中被测离子浓度:1 4.00/50.0/x C C mg L =⨯加标后电解池中被测离子浓度:2 4.00/50.0/50.0x s s C C C V =⨯+1122h kc h kc =⎧⎨=⎩ 分别将222,,Pb Cd Cu +++加标前后的溶出峰高12/20,26/45,18/32,mm mm mm 标准浓度10.00/,2.00/,5.00/mg L mg L mg L 加标体积0.1代入方程组,解得:水样中的2Pb +的含量:0.375/mg L ;2Cd +的含量:27.6510/mg L -⨯2Cu +的含量:0.161/mg L .第六章 库伦分析法例1:用铂电极电解2CuCl 溶液,通过的电流为20A ,电解时间为15min.计算阴极上析出铜和阳极上析出氯的质量。
解:设阴极析出铜和阳极析出氯都是唯一产物。
阴极反应22Cu e Cu ++→阳极反应 222Cl e Cl --→已知263.55/,70.90/Cu Cl M g mol M g mol ==所以 63.552015605.928296487Cu Cu M i t m g g nF ⋅⋅⨯⨯⨯===⨯2270.902015606.613296487Cl Cl M i t m g g nF⋅⋅⨯⨯⨯===⨯例2:称取Cd 和Zn 的试样1.06g ,溶解后,用汞阴极使Cd 和Zn 分别从氨性溶液中析出。