浅谈求极限的方法极限是高等数学中最基本最重要的概念,极限思想贯穿高等数学的全部内容,它是研究问题,分析问题的重要理论基础.因此掌握好求极限的方法对学好高等数学是十分重要的,求极限的方法因题而异,变化多端,有时甚至无从下手.本文总结了12种常用的求极限的方法,意在广开思路,然后举出三个一题多解的例子,希望这些例题对初学者有所帮助.1 求极限的方法1.1 利用斯托兹定理 定理1[1](57)P (∞∞型Stolz 公式) 数列{},{}n n x y ,设{}n x 严格递增(即∀n ∈N 有1n n x x +<),且lim n n x →∞=+∞,若11limn n n n n y y a x x -→∞--=- (有限数,+∞,或-∞),则lim n n nya x →∞=.证 )1( (a 为有限数)目的在于证明:0,0,ε∀>∃N >当n >N 时,有nny a x ε-<. ① 记 11n n n n n y y a x x α---≡--. ②按已知条件有lim 0n n α→∞=,即0,0,ε∀>∃N >当n ≥N 时,有2n εα<. ③现在的目的在于从③推出①,为此从②解出n y 再代入①,由②得11()()n n n n n y y a x x α--=++- (再迭代使用此式)21121()()()()n n n n n n n y a x x a x x αα-----=++-++- =⋅⋅⋅111()()()()n n n y a x x a x x ααN N+N+N -=++-+⋅⋅⋅++- 1111()()()n n n n n y x x x x a x x ααN N+N+N --=+-+⋅⋅⋅+-+- 两边同时除以n x ,再同时减去a ,得111n n n n n n nx x x x y y ax a x x x ααN+N+N -N N -+⋅⋅⋅+---≤+22n n n n y ax y ax x x x x x εεN N N N N---<+<+将n 再进一步增大,因n x →+∞,故1∃N >N ,使得1n >N 时有2n y ax x εN N -<.于是 22n n y a x εεε-<+=. )2( (极限为+∞的情况)因已知11limn n n n n y y x x -→∞--=+∞-,所以11lim 0n n n n n x x y y -→∞--=-,利用(1)中的结论,只要证明n y 严↗+∞(严格单调上升趋向无穷大),则有lim0n n n x y →∞=,lim n n ny x →∞=+∞(问题得证).因n x 严↗,要证n y 严↗,只要证111n n n n y y x x --->-,事实上, 11limn n n n n y y x x -→∞--=+∞-,所以对1,0M =∃N >,当n >N 时,有111n n n n y y x x --->-,即 n >N 时,110n n n n y y x x --->-> ④ 所以当n >N 时, n y 严↗.④式中令1,2,,,n k =N +N +⋅⋅⋅然后相加, 可知k k y y x x N N ->-,令k →∞,知k y →∞,证毕.)3( (极限-∞的情况) 只要令n n y z =-,即可转化为)2(中的情况.注 11limn n n n n y y x x -→∞--=∞-,一般推不出lim n n nyx →∞=∞,如令n x n =,222{}{0,2,0,4,0,6,}n y =⋅⋅⋅,这时虽然 11limn n n n n y y x x -→∞--=∞-,但{}{0,2,0,4,0,6,}nny x =⋅⋅⋅并不趋向于无穷. 定理2[1](60)P (型Stolz 公式 ) 数列{},{}n n x y ,设n →∞时0n y →,n x 严↘0(严格单调下降趋向零) 若11limn n n n n y y a x x -→∞--=- (有限数,+∞,或-∞),则lim n n nya x →∞=.注 定理1是∞∞型,其实只要求分母n x ↗+∞,至于分子n y 是否趋向无穷大,无关紧要.定理2则是名副其实的型.因为定理条件要求分子,分母都以0为极限. 例1 1112lim ln n n n→∞++⋅⋅⋅+ 解 设1112n y n=++⋅⋅⋅+,ln n x n =.显然,n x 严格单调递增,且lim n n x →∞=+∞,11lim n n n n n y y x x -→∞--=-1lim ln1n n n n →∞-11lim lim 1ln ln(1)11n n n n n n n →∞→∞==+-- 11lim 111ln[(1)(1)]11n n n n →∞-==++-- 由斯托兹定理1, 1112lim ln n n n→∞++⋅⋅⋅+1= 例2 求(ln 2)(ln 3)(ln )lim 12n n nK K K→∞++⋅⋅⋅+++⋅⋅⋅+ (K 为正整数).解 令(ln 2)(ln 3)(ln )n y n K K K=++⋅⋅⋅+,12n x n =++⋅⋅⋅+ ,显然,{}n x 单调递增,且lim n n x →∞=+∞,11lim nn n n n y y x x -→∞--=-()n n n K∞→ln lim 又1(ln )(ln )!limlim lim 0k k x x x x k x k x xx -→+∞→+∞→+∞==⋅⋅⋅==,由海涅定理()n n n K∞→ln lim 0= ,由斯托兹定理1, (ln 2)(ln 3)(ln )lim 12n n nK K K→∞++⋅⋅⋅+++⋅⋅⋅+0=1.2 定义法 定义1[2](23)P 数列极限的""N ε-方法 设{}n a 为数列,a 为定数,lim 0,0,,.n n n a a n a a εε→∞=⇔∀>∃N >>N -<有定义2[2](4244)P - 函数极限的""N ε-方法 设f 为定义在[,)a +∞上的函数,A 为定数,lim ()0,()0,x f x a ε→∞=A ⇔∀>∃M ≥>使得当x >M 时有()f x ε-A <.函数极限的""εδ-方法 设函数f 在点0x 的某个空心邻域0(;)U x δ'内有定义,A 为定数.0lim ()0,()0,x x f x εδδ→'=A ⇔∀>∃<>使得当00x x δ<-<时有()f x ε-A <.例3[1](17)P 按极限定义(εδ-法)证明11x →= 证2711169x =≤-=-1611(43)(43)x x x x +-+- 再用分步法寻找δ,使上式右端继续扩大,此方法在操作上有较大的灵活性、自主性、多样性,并不要求一步到位,可以逐步缩小搜寻范围.此题因1x →,若要简化分子可先设11x -<即02x <<,则上式右端16313344x x ⋅-≤⋅-3((1;1)[,))4U +∞在成立,进一步设118x -<即 111188x -<<+,于是上式右端321x ≤-(在1(1;)8U 内成立).故0,ε∀>取1min{,}328εδ=,则当1x δ-<时, 就有1ε<.用定义证明极限存在,有一先决条件,即事先得知极限的猜测值A ,但通常只给定了数列}{n x ,或函数)(x f ,对其极限A 不得而知,我们只能根据具体情况进行具体分析和处理,不妨再参考一下1.1,1.5,1.7或1.10.1.3 利用四则运算法则 定理3(四则运算法则)[2](30)P 若{}n a 与{}n b 为收敛数列,则{}n n a b +,{}n n a b -,{}n n a b ⋅也都是收敛数列,且有lim n →∞(n n a b ±)=lim lim n n n n a b →∞→∞±,lim n →∞(n n a b ⋅)=lim lim n n n n a b →∞→∞⋅.若再假设0n b ≠及lim 0,n n b →∞≠则{}n na b 也是收敛数列,且有lim lim .lim nn n n n n n a a b b →∞→∞→∞=注 对指数运算亦成立.若n x 0>,⋅⋅⋅=,2,1n 且a x n n =∞→lim ,b y n n =∞→lim ,则 b y nn a x n=∞→lim .1.3.1 “∞+∞∞+∞”型.例4 求极限1(4)7sin lim57cos(1)n n n n n n n +→∞-+++++解 1(4)7sin lim 57cos(1)nn n nn n n +→∞-+++++4sin ()777lim 75cos(1)()177n nn n nn n →∞-++==+++ 1.3.2“∞-∞∞-∞”型 例5 求极限n解n=n =13112123lim ++++∞→nnn =32. 注 函数的四则运算法则同样成立,这里不再一一列出来.但必须强调的是函数极限四则运算法则的条件是充分而非必要的,所以,利用四则运算法则求函数极限时,要对所给的函数进行验证,看是否满足条件.满足条件者,方能利用极限四则运算法则进行求之.但并非不满足该条件的函数就没有极限,而是不再适用该方法,通常用一些简单的技巧如拆项,分子分母同乘某一因子,变量替换,分子分母有理化等等.例6求极限lim x →+∞解lim x →+∞=limx=55limx +52=1.4 利用无穷小量的性质 1.4.1 无穷小量定义3 若lim 0,n n a →∞=则称n a 是n →∞时的无穷小量.定义4[2](59)P lim ()0,x x f x ︒→=则称()f x 是0x x →时的无穷小量.性质(1)有限个无穷小量的和、差、积为无穷小量.(2)有界量乘以无穷小量是无穷小量. 例7 求极限222(21)!!1lim[]sin cos (2)!!n n n n n→∞+解 222(21)!!1lim[]sin cos (2)!!n n n n n →∞+2222221sin(21)!!(21)lim()cos 1(2)!!n n n n n n n n →∞-+= 其中2(21)!!113355(23)(23)(21)(21)0()(2)!!224466(22)(22)22n n n n n n n n n n-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----≤=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅2210()(2)n n n -<→→∞,所以 2(21)!!lim()0(2)!!n n n →∞-=, 又22221sin(21)lim4141n n n n n →∞+=⋅=(有限数),2cos 1n ≤(有界量),根据无穷小量性质(2)得 原式0=,从而 222(21)!!1lim[]sin cos (2)!!n n n n n→∞+0=.1.4.2 等价无穷小量 定义5[2](61)P 设函数()f x ()g x ,0lim ()0x x f x →=,0lim ()0x x g x →=,且()0g x ≠,若0()lim1()x x f x g x →=,则称f 是g 当0x x →时的等价无穷小量.记为()fx 0()()g x x x →.常用的等价无穷小量有, 当0x →时, sinxx ,tanx x ,arctanx x ,ln(1)x+x ,(1cos )x-22x ,1xe-x11x n.例8[1](33)P求极限21cos)limn n -解因1n =,故原式2224111(1cos)n n n n n -==2212lim 1112n n n→∞==.所以21cos )n n -1=但是还应注意,等价无穷小求函数极限不要轻易代换,一般只在以乘除形式出现时使用,若以和差形式出现时,必须先变换形式才能用.例9 求极限302sin 2sin 4limx x xx →-解 32002sin 2sin 42sin 21cos 2lim lim x x x x x xx x x→→--=⋅=220222lim x x x x x →⋅⋅8= 错误的解法是302sin 2sin 4limx x x x →-=30224lim x x xx →⋅-0=错在对加减中的某项进行了等价无穷小代换.1.5 利用迫敛性定理1.5.1 数列及函数的迫敛性定理 定理4(数列的迫敛性定理)[2](30)P 设收敛数列{}n a ,{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n >N 时有n n n a c b ≤≤则数列n c 收敛,且lim n n c a →∞=.定理5(函数的迫敛性定理)[2](49)P 设0lim ()x x f x →=0lim ()x x g x →=A ,且在某邻域0(;)U x δ内有()()()f x h x g x ≤≤,则0lim ()x x h x →=A .当极限不易直接求出时,可考虑将求极限的变量作适当的放大、缩小,使所得的新变量易于求极限,且二者的极限值相同,则原极限存在,且等于此公共值.例10 求极限lim[(1)]n n n αα→∞+- (01)α<<解 10(1)(1)n n n n nααααα≤+-=+-1((1)1)n nαα=+- 由1(1)xα+ (01)α<<的单调性知11(1)1x x α+<+,于是111(1)111n n nα+-<+-=所以 1110(1)((1)1)0n n n n nααααα-≤+-=+-<→ ()n →∞由迫敛性定理, lim[(1)]n n n αα→∞+-0=例11 求极限1,,m n a a ⋅⋅⋅其中为正数.解 记A =1max{,,},,m i a a a i ⋅⋅⋅=为某一整数则A =i a =≤≤=A A ()n →∞由迫敛性定理知 lim n =A例12 求极限lim n n x →∞,13(21)24(2)n n x n ⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅解 因几何平均值小于算术平均值,故分母中的因子1322+=> 3542+=>⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ (21)(21)22n n n -++=>由此可知, 13(21)0024(2)n n x n ⋅⋅⋅⋅⋅⋅-<=<→⋅⋅⋅⋅⋅⋅,故lim n n x →∞=0.注 迫敛性定理求极限应用十分广泛,优越性在于经过放大或缩小,可以把复杂的东西去掉,使问题化简,但应注意,放大不能放得过大,缩小也不能缩得过小,必须具有相同的极限.1.5.2 利用子列收敛定理定理6(子列收敛定理)[2](37)P 数列收敛的充要条件是:任何非平凡子列都收敛(且收敛于 同一个数).即A →n x (当∞→n 时)∀⇔子列}{k n x 有A →k n x (当∞→k ). 同样还有这样的结论:}{n a 收敛}{2k a ⇔,}{12-k a 都收敛且收敛于同一个数.(证明略)例13 }{n a 满足∑∞=1n na收敛,且n k a a 1000≤≤,(n k n 2≤≤)证明 ∞→n lim 0=n na .证明 n ∀,i n i 22≤≤(12,1,-⋅⋅⋅+=n n n i )所以,i n a a 10002≤≤(12,1,-⋅⋅⋅+=n n n i )把式子展开再对应相加,得 )(10001212-++⋅⋅⋅++≤≤n n n n a a a na从而有 )(200201212-++⋅⋅⋅++≤≤n n n n a a a na )(0∞→→n 得偶子列收敛于0. 同理 n ∀,212i n i ≤-≤(,1,21)i n n n =+⋅⋅⋅-所以, 210100n i a a -≤≤(,1,21)i n n n =+⋅⋅⋅-,把式子展开再对应相加, 得 211210100()n n n n na a a a -+-≤≤++⋅⋅⋅+从而有21211210(21)2200()n n n n n n a na a a a --+-≤-≤≤++⋅⋅⋅+0()n →→∞ 得奇子列收敛于0,从而 ∞→n lim 0=n na .1.6 利用单调有界定理 定理7(数列的单调有界定理)[2](35)P 在实数系中,有界的单调数列必有极限.即若单调递增数列有上界,则上确界便是它的极限;若单调递减数列有下界,则下确界便是它的极限.定理8(函数单侧极限的定理)[2](35)P ()f x 为定义在0()U x ︒+的单调有界函数,则右极限lim ()x x f x +→存在; ()f x 为定义在0()U x ︒-的单调有界函数,则左极限0lim ()x x f x -→存在. 例14设数列1x =2x =⋅⋅⋅,n x ,⋅⋅⋅,求极限lim n n x →∞.解 1) {}n x 为单调递增数列.事实上,12x x =<=,设1x x K -K <则由于1x K+=故,11x x K+K ==>,即10x x K+K >>,由归纳法知,数列{}n x 单调递增. 2) {}n x 有上界.13x =<,设3x K <,则13x K+=<=.由数学归纳法知{}n x 有上界.3) 由数列的单有界定理得lim n n x →∞存在.设lim n n x →∞=A,对n x = 两端关于n →∞求极限,则A=230⇒A =A ⇒A =或3A =,而}{n x 为正值数列,0=A 舍去.所以lim n n x →∞3=.1.7 柯西收敛准则定理9(数列的柯西收敛准则)[2](38)P数列{}n a 收敛⇔0,()0,,,n m n m a a εεε∀>∃N >∀>N -<使有.⇔0,()0,,,n n n a a εεε+P ∀>∃N >∀>N ∀P -<使正整数有.定理10(函数的柯西收敛准则)[2](54)P 函数()f x 定义在0(;)U x δ︒上,0lim ()x x f x →∃0,()0,εηδ⇔∀>∃<>使0,(;)x x U x η︒'''∀∈,有()()f x f x ε'''-<例15 数列{}n x ,0110,,0,1,2,2n nx x n x +>==⋅⋅⋅+,证明lim n n x →∞存在,并求值.证明 设0<0x <12,0<1x =012x +<12,假设0<n x <12,则0<1n x +=12n x +<12, 由数学归纳法,,n ∀0<n x <12. 111111112222n n n n n n n n x x x x x x x x +P--+P +P--+P----=-=++++ 112221144n n n n x x x x +P--+P--<-<-<⋅⋅⋅ 1111111111()()()44224n n n x x --P+-<-<⋅+=ε∀0>,要使11()4n ε-<取ln []2ln 4εN =+-,当n >N 时,有n n x x ε+P -<, 由柯西收敛准则{}n x 收敛,从而极限存在,不妨设为0x ,则对112n nx x +=+两边当n →∞时, 取极限得0012x x =+,解得01x =-,由数列极限的保不等式性,取正值01x =-,从而lim 1n n x →∞=-.1.8 利用海涅定理 定理11(海涅定理)[2](52)P (或称归结原则) 设()f x 在0(;)U x δ内有定义,lim ()x x f x →∃⇔{}n x ∀⊂ 0(;)U x δ,0lim ,n n x x →∞=都有lim ()n n f x →∞存在且相等.这个定理深刻地揭示了函数极限和数列极限的关系.例16求极限n nπ解 取{}{}n x n =,令lim n n x →∞=+∞,则原式⇔sin limlim0x x x xxπππ→+∞==. 由海涅定理n nπ0=.例17[3](37)P求极限lim(,(0,0)2nn a b →∞≥≥ 解 (1)当,a b 有一为0时,比如0a =,则n n →∞=lim 2n n b→∞0== ①(2)当0,0a b >>时,令1()2x x x a b y +=,则1ln ln 2x xa b y x +=.0limln x y →=0012ln ln lim lnlim 22x x x x x x x x a b a a b b x a b →→++=+1(ln ln )2a b =+=. 由海涅定理,当0,0a b >>时, lim(2nn →∞=② 再由①,②两式得lim(2nn →∞=1.9 利用重要极限即利用①0sin lim 1x x x →=[2](56)P ②1lim(1)x x ex→∞+=[2](56)P 和1lim(1)xx x e →+=,其中的x 都可以看作整体来对待.第一个重要极限是“00”型,第二个重要极限是“1∞”型. 例18 求极限 01cos cos 2cos3lim 1cos x x x xx →--解 这是“0”型,那么想办法把它凑成第一个重要极限的形式.原式01cos cos (1cos 2)cos cos 2(1cos3)lim 1cos x x x x x x x x→-+-+-=-00cos (1cos 2)cos cos 2(1cos3)1lim lim 1cos 1cos x x x x x x x x x→→--=++--2200223cos cos 22sin cos 2sin 21lim lim 2sin 2sin 22x x x x x x x x x→→⋅⋅⋅=++22222002223()sin ()sin 2221limcos 4limcos cos 293sin ()sin 222x x x x x x x x x x x x x →→=+⋅⋅⋅+⋅⋅⋅⋅ 14914=++=.例19[2](58)P 求极限211lim(1)n n n n→∞+- 解 这是“1∞”型的.显然要用第二个重要极限的形式.2111(1)(1)()n n e n n n n+-<+→→∞. 另一方面,当1n >时有2221112221111(1)(1)(1)n nn n n n n n n n n nn -------+-=+≥+,而由海涅定理,(取2,2,3,1n n x n n ==⋅⋅⋅-) 得 222112211lim(1)lim(1)n n n n n n n n n n ---→∞→∞--+=+=x x x)11(lim ++∞→=e . 所以,由数列极限的迫敛性得211lim(1)nn n n →∞+-e =. 1.10 利用定积分的定义求极限由于定积分是一个有特殊结构和式的极限,这样又可利用定积分的值,求出某一和数的极限.若要利用定积分求极限,其关键在于将和数化成某一特殊结构的和式.定义6 若()f x 在[,]a b 上连续,那么()baf x dx ⎰存在,01()lim ()nbi i ai f x dx f x ζT →==∆∑⎰110()lim ().()lim ().nn i n n i i b a b a f a n n i b a b a f a n n →∞=-→∞=--⎧+⋅⎪⎪=⎨--⎪+⋅⎪⎩∑∑ 取右端点 取左端点 例20 求极限22233333312lim()12n n n n n n →∞++⋅⋅⋅++++ 解 22233333312lim()12n n n n n n→∞++⋅⋅⋅++++ 2222333312()()()lim ()121()1()1()n nnn n n n n n n n→∞=++⋅⋅⋅++++231()1lim 1()nn i i n i n n→∞==⋅+∑21301x dx x =+⎰13301131dx x =+⎰1ln 23= 例21 求极限221lim1nn n →∞K=K+K +∑ 解 221(1)nn K =K +K +∑≤2211n n K =K +K +∑≤221nn K=K+K ∑ 左边 221(1)nn K =K +K +∑=22221111(1)(1)n nn n K=K=K +-+K ++K +∑∑ =222111111(1)1()nnn n n nK=K=K +-K ++K ++∑∑ 其中, 22211100(1)nn n K =≤≤→+K +∑ ()n →∞ lim n →∞211111()nn n nK=K +K ++∑=1201ln 212x dx x =+⎰所以, limn →∞221(1)nn K =K +K +∑ =1ln 22 右边 221nn K=K +K ∑=21111()nnn nK=KK +∑=1201ln 212x dx x =+⎰由迫敛性定理得 221lim 1nn n →∞K=K +K +∑=1ln 22 1.11 利用洛比达法则洛比达法则是计算不定式极限的重要方法,形如00,,0,,0,,10∞∞∞⋅∞∞-∞∞∞等七种未定式均可用洛比达法则求解.定理12(洛比达法则)[2](127)P 假设①函数()f x 和()g x 在x a =的某邻域()U a 可微,且()0g x '≠;②lim ()lim ()0x ax af xg x →→==(或为无穷大);③()lim()x af xg x →存在(或为无穷大);则 ()()limlim ()()x ax a f x f x g x g x →→'=' 如果用洛比达法则算不出结果,不等于极限不存在.只是因为它是充分条件,不是必要条件.但只要满足洛比达法则的条件就可进一步微分,也可多次使用该法则.例22 求极限30sin lim 7x x xx→- 解 这是一个“0”型的极限,满足洛比达法则的条件,注意两次使用洛比达法则,得30sin lim 7x x x x →-2001cos sin 1lim lim 214242x x x x x x →→-===. 例23 求极限1121cos 2lim4x x tdt x t→+∞⎰ 解 由于202cos 214lim 14t tt t →=所以112cos 24xtdt t→+∞⎰()x →+∞ 因此,原极限是∞∞型的,满足洛比达法则的条件. 所以 1121cos 2lim 4x x t dt x t →+∞⎰12122cos 21cos 2114lim lim 144()x x x t dt t x x x x→+∞→+∞-===⎰. 例24[1](45)P 求极限11cos0sin lim()xx x x-→解 首先像这样幂指函数较复杂,要考虑取对数后再求极限,那么求极限11cos0sin lim ln()xx x x-→, 11cos 0sin lim ln()xx xx-→01sin limln 1cos x xx x→=-20sin (ln)lim()2x xx x →'='20cos sin lim sin x x x x x x→-= 30(cos sin )lim ()x x x x x →'-='20sin lim 3x x x x →-=13=-,故原式13e -=. 1.12 利用函数的泰勒展式.泰勒公式的形式有很多种,但是在利用泰勒公式求极限的时候,通常用到的是皮亚诺型麦克劳林公式,因此在这里就只给出泰勒公式的这种特殊的形式:[2](136)P()2(0)(0)(0)()(0)()1!2!!n nn f f f f x f x x x o x n '''=+++⋅⋅⋅++下面是具体的常用皮亚诺型麦克劳林公式:[2](136)P231()2!3!!nxn x x x e x o x n =++++⋅⋅⋅++ ()x -∞<<+∞351212(1)sin ()3!5!(21)!n n n x x x x x o x n ---=-++⋅⋅⋅++- ()x -∞<<+∞24221(1)cos 1()2!4!(2)!n nn x x x x o x n +-=-++⋅⋅⋅++ ()x -∞<<+∞231ln(1)(1)()23nn n x x x x x o x n++=-++⋅⋅⋅+-+ (11)x -<≤ 2(1)(1)(1)(1)1()2!n n n x x x x o x n ααααααα--⋅⋅⋅-++=+++⋅⋅⋅++ (1)x <211()1n n x x x o x x=+++⋅⋅⋅++- (1)x < 例25求极限x x →解 2211()2xe x x o x =+++2211()2x o x =-+.所以22002211()12lim 122(1())2xx x x x o x x x o x →→+++--=--+222201()12lim ()2x x o x x o x →+==+. 例26 求极限2240cos limx x x e x -→-解 244cos 1()2!4!x x x o x =-++; 222224442()21()()1()22!28x x x x x e o x o x --=+-++=-++则2240cos lim x x x e x -→-=242444011()2!4!28lim x x x x x o x x→-+-+-+44401()112lim 12x x o x x →-+==-例27[1](46)P 222012lim (cos )sin x x x x e x→+- 解 利用泰勒展式,12244211(1)1()28x x x o x +=+-+,24241()2!x x e x o x =+++, 224sin ()x x o x =+,244cos 1()2!4!x x x o x =-++;代入原式,有222012lim (cos )sin x x x x e x→+-0lim x →=224424442424111(1())228(1()(1()))(())2!4!2!x x x o x x x xo x x o x x o x +-+-+-++-++++ 0limx →=44244241()8311(())(())224x o x x x o x x o x +--++=112- 综上所述,本文精选了十二种常用的求极限的方法,我们学生在解题时要根据具体的情形选用合适简洁的方法.另外,求极限的方法还有很多,比如求某种递推数列极限时要证明其存在用到的“压缩映像”原理和不动点方法,而这些方法又是比较难,在此就不一一列举了.适当的时候还可用变量代换法把一些复杂的式子简单化,再选用上述的十二种方法中的一种来求数列或一元函数的极限.2 一题多解有些求极限问题可以用多种方法来解决,下面我选择了一些题目运用上述方法进行求解. 例1 求极限1lim ((1))nn n e n→+∞-+解法1 首先求极限101lim((1))xx e x x →-+,即求10(1)lim xx e x x→-+.101lim ((1))xx e x x →-+10(1)limxx e x x→-+==洛比达1ln(1)0lim((1))lim()x x xx x x e+→→''-+=-ln(1)0lim x xx e +→=-⋅2ln(1)1x x x x -++=连续性0ln(1)lim x x x e →+-⋅20ln(1)1lim x x x x x →-++ =洛比达e -⋅1()2-2e =,再由海涅定理1lim ((1))n n n e n →+∞-+2e=.解法2 首先求极限101lim((1))xx e x x →-+,即求10(1)lim xx e x x→-+.利用泰勒展式,22()1ln(1)2(1)x x o x x xxxx ee-+++==1()2xo x e-+=,所以, 10(1)limxx e x x →-+1()()22001limlimxxo x o x x x e eee xx-+-+→→--===洛比达2e, 再由海涅定理 1lim ((1))nn n e n→+∞-+2e =. 解法3 1lim ((1))n n n e n→+∞-+1(1)lim1nn e n n→∞-+=, 令1(1)n n y e n =-+,1n x n =,lim lim 0n n n n x y →∞→∞==,1n n x x -<,11lim n n n n n y y x x -→∞---111(1)(1)1lim 111n nn n n n n -→∞+-+-=--12112(1)(1)lim (1)n n n n n n n n n n n ----→∞+--=- 11111(1)(1)1lim11(1)1n n n n n n n n n -→∞--+--=-- 到这里式子已经很复杂,也许可以再用洛比达法则和海涅定理来求出极限或者用泰勒展式求出极限,再由斯托兹定理得出所求值,也许它根本就没有极限值,或极限值不确定,那么就不能再用斯托兹定理求出所要的值.这里由于表达式很复杂,计算量很大,就不再写出过程,我们重在解题思想,所以选择适当的方法很重要.例2 ()f x 在[1,1]-上连续,恒不为0,求极限0x →解法1 由等价无穷小性质,31x-ln3(0)x x →,11()sin 3f x x . 故0x →001()sin sin ()3lim limln 33ln 3x x f x x x f x x x →→===(0)3ln 3f .解法2 ()f x 在[1,1]-上连续,因而()f x 在其上有界.11()sin ()3f x x o x =++,31ln 3()x x o x =++得0x →01()sin ()3lim ln 3()x f x x o x x o x →+=+01sin ()(1)3lim ln 3(1)x x f x o x o →+=+=(0)3ln 3f . 例3 设113(1)0,,1,2,3n n nx x x n x ++>==⋅⋅⋅+证明:此数列有极限,并求其极限值.解法1 由已知0n x >.)1(当1x >12113(1)63333x x x x +==->-=++16333n n x x -=->-=+213333n n nn n n x x x x x x ++---=+0n=<,1,n n n x x x +<,从而n x 收敛.)2(当0n x <≤160333n n x x -<=-≤-=+且1)03n n n n nx x x x x +-=≥+,即1n n x x +≥,n xn x 收敛.由)2(),1(知n x 必收敛,且13(1)lim lim3n n n n nx x x x +→+∞→+∞+==+,得3(1)3x x x +=+,23x =,由0n x >得x =lim n n x →∞=解法2 假设0n x >收敛,令lim n n x x →∞=由解法1知x =下用ε-N 证明n x0ε∀>取N ∈N,使N >,当n N >时,有13(1)3n n nx x x ++=+n =≤11n Nx x ε≤⋅⋅⋅≤-≤<.所以lim n n x →+∞=.有很多求极限的题目可以用多种方法来求解,这里不再一一举例.我们应选择最适当的方法,这样不仅可以使题简化,而且使我们的解题思路更加清晰,解题正确率高,节省时间,提高效率.极限是高等数学中一个基础而重要的概念,它贯穿高等数学的内容始终,是研究问题,分析问题的重要理论基础.因此掌握好求极限的方法对学好高等数学是十分重要的.希望我的论文能为正在学习和已经学过数学分析的人提供一些有益的视觉.。