优选排水采气工艺
造成地质特征差别的主要原因:储层储渗空间的连通性与 均质程度。
孔隙型储层具有较好、较广泛的连通特点,气水分异能得 以充分进行,在沉积上以河流、湖泊相为主,砂体多为层状, 能较容易地确定气藏范围与储量。
裂缝型储层其裂缝发育程度主要取决于地应力的大小与岩 石的抗压强度,常为有限封闭体,气水分布、含气范围完全 受裂缝网络形态、大小所控制。
6
第一节 排水采气工艺的机理
三、排水采气工艺方法及评价
排水采气工艺:
⑴ 优选管柱排水采气 ⑵ 泡沫排水采气 ⑶ 气举排水采气 ⑷ 活塞气举排水采气 ⑸ 常规有杆泵排水采气 ⑹ 电潜泵排水采气 ⑺ 射流泵排水采气
评价依据: (1)气藏的地质特征 (2)产水井的生产状态 (3)经济投入情况
7
第二节 优选管柱排水采气
1.2W
实验与经验
临界流速 :
kp
0.03313 (10553
34158
Gp wfp ZT
)
1 4
(
Gp
wfp
ZT
1
)2
临界流量) 2 (10553
34158
Gp wfp ZT
1
)4
1
p
2 wfp
d
2 i
13
第二节 优选管柱排水采气
2.气井连续排液的合理油管直径
(2)井口有足
够的压能
气
水
(1)气流流速必 须达到连续排液
的临界流速
关键:优选气井合理管柱
目标:使气井正常生产,延长气井的自喷采气期。 9
第二节 优选管柱排水采气
二、工艺设计计算
⒈ 气井连续排液的临界流速与临界流量
根据气体状态方程,在油管鞋处的气体体积流量与标准 状况下的体积流量的关系为:
Q
p0 ZT pwfp Z 0T0
自喷排水采气
我国已开发的气田,大多数属于低孔低渗的弱弹性 水驱气田。
实践证明:气井的积液对气井特别是中后期低压气 井的生产和寿命影响极大。只有气井产层的流入和油 管产出的工作相互协调,才能把地层的产出液完全连 续排出井口,获得较高的采气速度和采收率。
8
第二节 优选管柱排水采气
一、工艺原理
稳定自喷排水采气的两个条件:
di
1
1.2423 (GZT ) 4 (10553
34158
Gp wfp ZT
1
)8
1 1
p4 wfp
Q02
3.油管下入深度的确定
Hi H1 L1 H1 L / 2 L
H1
1
K
L
di2 D2 di2
14
第二节 优选管柱排水采气
三、优选管柱诺模图
当油管直径一定时,在双对数坐标系中,井底流压和临 界流量、临界流速都成直线关系。
Q0
(1)气流速度: 0.05097 ZTQ0
p
wfp
d
2 i
10
第二节 优选管柱排水采气
(2)油管鞋处液滴的沉降速度(滞止速度)
若液滴在井筒中的沉降速度和气流举升速度相等,即液滴处
于滞止状态悬浮于气井管鞋处,油管鞋处液滴的沉降速度(滞
止速度)为:
W
4
g
( l 3
g
g
)
d
m
在气流中自由下落的液滴,受到一种趋于破坏液滴的力的 作用;而液滴表面张力却趋于使液滴保持完整。这两种压力 对抗能够确定可能得到的最大液滴直径与液滴沉降速度关系:
4
第一节 排水采气工艺的机理
不同储渗类型气藏地质特征
储渗类型 孔隙型 裂—孔型 裂—洞型 孔—裂型 裂缝型
气藏边界 清晰 较清晰 欠清晰 不清晰 不清晰
水体类型 多为边水 多为边水 边底水 边底水 多为边水
气水界面 整齐一致 较整齐一致 欠整齐 不整齐 不整齐、多介面
地层压力 多为常压 常压、高压 常压、高压 高压较多 高压、超高压
优选排水采气工艺
采气工程-排水采气工艺
引言
无水气藏:是指产气层中无边底水和层间水的气藏 (也包括边底水不活跃的气藏)。 驱动方式:天然气弹性能量,进行消耗式开采。 有水气藏除少(数1气)井确定投合产理时的就采产气地速层度水外,多数气 井是在气藏开(发2的)中充分后利期用,气由藏于能气量水界面上升,或 采气压差过大引起底水锥进后才产地层水。 驱动方式:水驱
2
引言
气井产水的负面影响: ① 井筒积液、回压增大、井口压力下降、气井的生产 能力受到严重影响; ② 井底附近区积液,产层会受到“水侵”、“水锁”、 “水敏性粘土矿物的膨胀”等影响,使得气相渗透率 受到极大损害。
3
第一节 排水采气工艺的机理
一、气藏的地质特征
气藏地质特征主要是指气藏形态、边界性质、气水关系及 压力特征等,在很大程度上与储渗类型有直接关系。
储量计算方法 容积法
容积法、动态法 动态法为主 动态法 动态法
5
第一节 排水采气工艺的机理
二、排水采气应具有的地质要素
⑴ 气藏具有封闭性弱弹性水驱特征。气藏的封闭性、定容 性使排水采气成为可能。
⑵ 产水气藏的水体有限、弹性能量有限。 ⑶ 地层水分布受裂缝系统控制,多为裂缝系统内部封闭性 的局部水。这些水沿裂缝窜流,因此可利用自然能量和人 工举升排水。 ⑷ 产水气井井底积液。地层水在井底周围区域聚集,有利 于人工举升。
根据上述公式,编程计算,求得不同井深和井底流压下 的临界流速和临界流量与一定实际产量相对应的对比流速 和对比流量。然后在双对数坐标纸上绘制诺模图。
自学:图5-2
r
kp
Qr
Q0 Qkp
取 r Qr
15
第二节 优选管柱排水采气
四、影响气井自喷排水采气能力的因素
1.油管举升高度
气井连续排液的临界流速与气井的井底流压和油管举升 高度有关,而与油管的管径无关。当井底流压一定时,油 管举升高度越大,需要的临界流速越大,反之亦然。
Qkp
1
0.648 (GZT ) 2 (10553
34158
Gp wfp ZT
kp
0.03312(10553
34158Gpwfp ZT
)
1 4
(
Gpwfp ZT
)
1 2
16
第二节 优选管柱排水采气
四、影响气井自喷排水采气能力的因素
2.油管尺寸
气井连续排液的流量与管柱直径的平方成正比,自喷 管柱直径越大,气井连续排液所需临界流量也就越大; 反之亦然。因此,小直径油管具有较大举升能力,这就 是小油管法排水采气工艺的基本原理。
30g dm gW 2
11
第二节 优选管柱排水采气
油管鞋处液滴的沉降速度(滞止速度)为:
W
4
g
( l 3
g
g
)
d
m
dm
30g gW 2
1
W 40g 2
l g g2
4
12
第二节 优选管柱排水采气
(3)气井连续排液的条件
为了确保气井连续排液,气体临界流速须为滞止速度的
1.2倍,即: