纤维素酶的结构与功能综述
酶的基本组成单位是氨基酸,20种氨基酸按不同顺序排列组合而成具有一定空间结构的多肽链,各种氨基酸还具有不同的侧链,各种侧链又有不同的化学反应性。它们的相互作用形成各种化学键,如离子键、氢键、疏水键等。酶分子的特定化学结构反映了一定的催化功能。酶与那些化学催化剂相比,有一些显著的催化功能,比如高效催化能力,以及在温和反应条件下的高度选择性。在有机合成领域,酶已经被作用催化剂选择性的合成有机混合物。所有的天然高分子聚合物生产都是通过酶的体内催化得到的[2]。
不同的微生物产生的纤维素酶属于不同的类别,如隶属于丝状真菌的瑞氏木霉Trichoderma Reesei(红褐肉座菌Hypocrea jecorina的无性型),其分泌的纤维素酶主要分布于GH5,GH6,GH7,GH12,GH45与GH61家族;放线菌中的褐色高温单孢菌Thermobifida fusca主要有来自GH5,GH6,GH9与GH48家族的相关纤维素酶基因;而好氧细菌中哈氏噬纤维菌Cytophaga hutchinsonii主要产生GH5与GH9家族的相关纤维素酶[8];厌氧细菌中的热纤梭菌Clostridium thermocellum主要产生GH5,GH8,GH9与GH48家族的相关蛋白。同一家族具有相同的催化断键机制,同一族系,甚至不同族系都可能会具有相同的断键机制[9]。表2列出了部分主要纤维素酶家族的蛋白结构折叠类型、催化机制及其他主要信息。
研究生课程作业(综述)
题目:纤维素酶的结构与功能
食品学院食品工程专业
学号
学生姓名
课程食品酶学
指导教师
二〇一三年十二月
纤维素酶的结构与功能
摘要:人类的生命活动离不开酶,生物体的一切新陈代谢活动都离不开酶,并且工业酶产业正在迅速发展。本文简单阐述了酶的结构与功能,重点以纤维素酶为例子,阐述它的来源、结构、分类、催化机制以及在各行业的应用,并对纤维素酶的发展前景作了一定展望。
3.2应用
纤维素酶广泛应用于植物性农产品加工、饮料和调味品的酿造、纺织工业、纸张回收、清洁剂酶、动物饲料添加剂等方面。
随着石化能源的日益枯竭,生物资源由于其资源丰富、可再生性和不增加温室气体排放等优点,正日益引起政府和社会的重视。采用纤维素酶将生物质水解为糖,再发酵可产生物液体燃料(如生物乙醇、丁醇和碳氢化合物等),为解决能源危机展现了新的曙光。若纤维素酶水解生物质产生的乙醇、丁醇或其他糖发酵产品成为主要运输燃料,那么纤维素酶将会成为世界第一大工业。为降低成本,植物基因工程正致力于研究利用植物自身生产纤维素酶来讲解纤维素[12],且蛋白质的多样性,需有效地讲解植物细胞壁,并且由于真菌产酶的多样性,建立一个与真菌产酶活性相当的植物产酶体系是相当困难的。Saeid Karkehabadi等人[13]致力于降低生物生产乙醇的成本做了研究,从嗜热菌中发现了一种61家族蛋白,它可以提高T.reesei粗纤维素酶预处理玉米秸秆的活性,使酶成本降低了数倍。并且T.reesei菌中含有多种61家族基因,并且61家族蛋白结构中不含油类似于纤维素结合位点的区域。
底物的类型:糖苷、肽等
裂合酶Байду номын сангаас
键裂开
被裂开的键:C-S、C-N等
被消去的基团
异构酶
异构化
反应的类型
底物的类别、反应的类型和手性的位置
连接酶
键形成
被合成的键:C-C、C-O、C-N等
底物S1、底物S2、第三底物(共底物)几乎是核苷酸
自然界中,一切生命现象都与酶有关,生物体的新陈代谢过程都在酶的催化作用下进行,并受酶的控制和调节。如果离开了酶,新陈代谢就不能进行,生命也就停止。因此,酶学的研究有着重大的理论和实践意义。近年来,分子生物学领域,在不断涌现的新方法和新技术的推动下,使酶的结构与功能的关系愈加清晰。本文以纤维素酶为具体例子,详细介绍了纤维素酶的来源、结构、催化机制、应用等内容。
1961年国际酶学委员会(Enzyme Committee,EC)根据酶所催化的反应类型和机理,把酶分成6大类。如表1所示:
表1酶的分类及其反应本质
大类
反应本质
亚类
亚—亚类
氧化还原酶
电子转移
供体中被氧化基团的性质
受体的类型
转移酶
基团转移
被转移基团的性质
被转移的基团的进一步描述
水解酶
水解
被水解的键的类型(酯键、肽键)
2.1纤维素酶的来源
不同的微生物合成的纤维素酶在组成上有显著的差异,对纤维素的降解能力也大不相同。自然界可以产生纤维素酶的微生物主要有细菌、放线菌、真菌等。由于放线菌的纤维素酶产量极低,研究很少;细菌的产量也不高,且主要是内切葡聚糖酶,大多数菌所产纤维素酶对结晶纤维素没有活性,另外,所产生的酶是胞内酶或吸附于细胞壁上,很少能分泌到细胞外,增加提取纯化难度,在工业上很少应用。目前,用于生产纤维素酶的微生物菌种大多都是丝状真菌,其中产酶活力较强的菌种为木霉属(Trichoder-ma)、曲霉属(Aspergillus)和青霉属(Penicillium),特别是里氏木霉(Trichoderma reesei)及其近缘菌株较为典型。丝状真菌具有产酶的诸多优点:产生的纤维素酶为胞外酶,便于酶的分离和提取;产酶效率高,且产生纤维素酶的酶系结构较为合理;同时可产生许多半纤维素酶、果胶酶、淀粉酶等。同时,其生长环境粗放、酶易提取,且菌株安全无毒,因而里氏木霉被公认为是最具有工业应用价值的纤维素酶生产菌[3]。
Keywords:cellulasestructurefamilyfunction
1前言
酶是生物体组织或细胞内具有特殊催化活性的蛋白质,亦称生物催化剂。根据蛋白质分子的组成和盘曲折叠方式,可以将酶分为一级结构和高级结构(二级结构和三级结构),与酶的催化功能密切相关,结构的改变会引起酶催化作用的改变或丧失。1955年Sanger等报导了胰岛素的氨基酸序列,人们开始把视线注意在酶的结构上。随后1963年,核糖核酸酶的一级结构被测定,之后用X-ray crystallography测定了ribonulease,lysozyme,chymotrypsin,trypsin,papain和carboxypeptidaseA的三级甚至四级结构。一级结构就是指蛋白质分子中肽链的氨基酸残基的排列顺序,由于半胱氨酸侧链的巯基经氧化后,能形成—S—S—键,因此在蛋白质分子的链内或链间都有可能形成二硫键;二级结构指蛋白质分子的肽链本身三维空间的规律性;三级结构就是蛋白质的二级结构按照一定方式再盘曲折叠,并通过氢键和疏水键维系的结构。且酶蛋白的一级结构是基础,但必须有一定的空间构型(一般指二级、三级结构)时才呈现活性[1]。
图1C.fimi酶降解纤维素的示意图
(其中,直线表示结晶纤维素,锯齿线表示非结晶纤维素。由示意图可以看出,Cel6A是一种与非结晶纤维素具有高度亲和力的非连续性内切葡聚糖酶,同时Cel5A是一种引起非结晶纤维素解聚的连续性内切纤维素酶;Cel6B是一种进攻纤维素非还原性末端的外切葡聚糖酶,同时Cel48A是一种分解纤维素还原性末端的连续性外切葡聚糖酶)
2纤维素酶的概念
自1906年从蜗牛消化道发现纤维素酶以来,陆续报道了细菌、放线菌、丝状真菌等许多微生物中纤维素酶的存在。1954年开始,美军Natick实验室就已研究了军用纤维素材料微生物降解的防护问题,后来发现纤维素经微生物降解后,可产生经济、丰富的生产原料,且有望解决自然界不断产生的固体废物问题,于是纤维素酶得到了广泛的关注。
2.3纤维素酶的家族
根据蛋白质结构域中氨基酸序列的相似性,将不同物种来源的碳水化合物活性酶类(Carbohydrate-Active enZYmes,CAZy)分成不同的蛋白质家族,将蛋白质氨基酸序列相似度高于30%的归为同一GH家族。其中糖苷水解酶现已有131个家族,纤维素酶类分布在至少17个GH家族中,是糖苷水解酶数据库中家族数目最多的一类水解酶类。不同家族的纤维素酶具有不同的演化历史和进化起源,因此不同GH家族之间的亲缘关系不同,有的亲缘关系比较近,如GH7家族只含有真菌的水解酶类,GH8家族只含有细菌产生的水解酶类等;有的亲缘关系较远,如GH9家族的纤维素酶,产生该类酶的生物种类广泛,有细菌(包括好氧菌和厌氧菌)、真菌、植物与动物(原生动物与白蚁),另外GH5与GH12家族的成员也广泛分布于古菌、细菌与真菌三类生物中。
2.2纤维素酶的结构
关于纤维素酶的结构,第一次报道是Pettersson和Bhikhabhai关于里氏木霉的I型外切纤维素酶的氨基酸序列中,发现其与来自同物种的内切葡聚糖酶相关[4]。丝状真菌所产的典型游离纤维素酶分子具有多结构域的构架,包括碳水化合物结合模块(Cellulose-binding module,CBM),其通过柔性的连接肽(Linker)连接至催化结构域(Catalyticdomain,CD)上,另外部分酶分子还含有其他结构域。构成厌氧细菌纤维小体的纤维素酶分子一般由一个对接模块(Dockerin)通过连接肽与一个催化结构域(CD)连接,其中对接模块可与支架蛋白(Scaffoldin,又称作脚手架蛋白)的粘连模块(Cohesin)结合,而支架蛋白一般还会存在一个CBM[5]。CBM在结合及降解天然纤维素的过程中具有重要作用;而CD则主要是催化糖苷键的断裂。纤维素酶包括三个酶活性:内切葡聚糖酶(Endoglucanase,EG;EC 3.2.1.4),可以切断纤维素链的β-1,4键;外切葡聚糖酶(Cellobiohydrolase,CBH;EC 3.2.1.91,EC3.2.1.176)又称纤维二糖水解酶,可以移除自由链端的纤维二糖;β-葡萄糖苷酶(β-glucosidase,BGL;EC 3.2.1.21),可以水解纤维二糖成为葡萄糖单元[6]。
表2主要纤维素酶家族的基因序列、拓扑结构、催化机制及其成员信息统计表
3纤维素酶的催化机制及应用
3.1催化机制
纤维素是地球上最丰富的生物资源,最初是在植物和海藻的细胞壁结构中发现的,同时也可以从其他的途径生产纤维素,比如细菌。纤维素是由β-1,4-糖苷键连接D-葡萄糖单元形成的一条线性高分子链,超过10000个葡萄糖残基。由于纤维素的结构非常紧密,很难通过一些化学方法将其彻底水解,要利用纤维素生产绿色能源是一个难题。而纤维素酶却能高效水解纤维素酶。