牧草的优化栽培摘要:牧草对畜牧业的发展非常重要,同时对其他相关的产业也起到促进作用。
本文就牧草的发展现状及在优化栽培方面进行概述。
关键词:牧草;优化栽培The optimal cultivation of the pastureAbstract: Forages on the development of animal husbandry is very important, while also playing a catalytic role on other related industries. This paper is to summarize the current development of pasture status and aspects of the optimal cultivation of the pasture.Key words: Pasture; optimal cultivation1 引言随着农村产业结构的调整和国家退耕还林还草政策的实施,牧草种植业日趋蓬勃兴起。
草当粮种,种草养畜正成为产业结构调整的重要组成部分。
种草养畜对于农户既改善了畜禽日粮结构、节省饲粮,降低生产成本,又将种植业、养殖业结合到一起,提高了土地的经济利用率。
由于牧草的种类繁多,各地的光、热、水、土等自然环境条件不同,因此种植牧草时,只有了解其生物学特性和生长习性,掌握栽培技术,才能充分发挥牧草的生产性能,提高种草养畜的经济效益。
牧草为人类文明进步和社会发展做出了巨大的贡献,有人称它为持续农业的基石[1]。
牧草对人类和自然界都有十分重要的作用,其具有一定的营养成分和饲用价值,是草食动物的重要饲料。
牧草形成的地面覆盖和地下根系结构具有防风固沙、防止土壤侵蚀等水土保持作用[2],牧草残留的有机体使微生物活动,能够增强土壤肥力,促进草地类型的演变。
1.1 国外牧草发展现状在世界发达国家中,畜牧业在农业中的比重很高,如法国57%、美国60%、加拿大65%、德国74% ,而且畜牧业产值的60% 以上由牧草转化而来,这些国家视牧草为“希望之草”和“生命之草”,并把畜牧业产值的高低作为现代化农业的标志[3]。
如美国有909.5万头奶牛、900万头绵羊、900万匹马,每年出栏肉牛3685.3万头,年消耗饲料5亿t,其中干草1.7亿t。
家畜日粮中牧草所占的比例分别为:肉牛83%、羊91%、奶牛61%、马60%,牧草种植面积共2500万hm2。
从1987年起,饲草工业跃居美国十大工业的第九位[4]。
在草地畜牧业发达的国家,人工草地比重大,草地的载畜能力和生产能力也高,如新西兰、英国以及日本等均有草业高效生产基地,畜牧业产值相当于种植业的一半左右。
1.2 国内牧草发展现状新中国成立后,特别是20世纪以来大规模防灾基地建设的开展,人工草地得到重视和全面发展。
我国人工草地的建设在天然草原生产力不断退化的情况下,对畜牧业生产的不断增长起到了重要的支撑作用。
目前我国拥有4亿hm2天然草地,占全球草地总面积的13%,居世界第二位,草地类型居世界第一位[5]。
但长期以来,对我国草地资源的利用一直处于掠夺式的自然放牧经营状态,乱垦滥牧现象十分严重,造成1/3以上草地退化、沙化和碱化(简称“三化”)。
目前,我国90%以上的草原已经或正在退化。
据统计,我国荒漠化土地262万km2,占国土面积的27.3%,每年仍以2460km2的速度扩展,部分地方出现沙进人退的现象。
由于“三化”草原的逐年扩大和蔓延,草原生产能力显著下降,产草量比20世纪60年代下降50%以上。
单位面积的产草量仅为世界平均水平的30%,单位面积的草地产值仅相当于澳大利亚的1/10、美国的1/20和荷兰的1/50[6],抑制了我国畜牧业的发展。
2 牧草的优质栽培2.1 牧草品种的选择2.1.1 根据当地环境选择牧草品种首先,要了解土壤的类型,中性偏碱土壤,适合耐碱性强的品种;中性偏酸土壤,适合耐酸性强的品种;盐碱地只适合种植耐盐碱的品种。
低山丘陵区,大多土质差,水资源缺乏,则应种植耐瘠耐旱、覆盖性好的品种;其次,要根据各地降水量的不同选择抗旱能力不同的品种。
在我国的黄淮地区、黄土高原中东部、东北平原及内蒙古高原东部等地区,适宜种植中等抗旱的牧草品种,如紫花苜蓿,其根系入土很深,有较强的抗旱能力;相反,杂交狼尾草具有良好的抗旱性和耐涝性,但抗寒性较差,气温低于零度时间稍长就会冻死,所以适宜在长江中下游地区种植。
2.1.2 根据利用目的选择牧草品种在生产中,若以收获青绿饲料为目的,应以牧草的生物产量高低作为考虑重点。
选择多年生、初期生长良好、短期收获量高,且对肥效较敏感的品种,如紫花苜蓿、红三叶等,此外,牧草的抗病性、抗倒伏性、是否便于刈割等也应考虑。
有些养殖场的人工草场放牧利用比较频繁,因此应优先考虑再生能力强、密度大的品种;此外可采用混播,如三叶草与黑麦草混合播种,一方面可利用三叶草根瘤菌的固氮作用,促进黑麦草的生长,另一方面充分利用黑麦草能量充足的特点,从而获得平衡的营养物质。
2.1.3 根据品质及适口性选择牧草品种牧草的品质主要是指其蛋白含量和消化率,同时牧草的适口性也很重要。
鲁梅克斯具有营养全面、蛋白质含量高、适口性好、易消化的优点,因此有牧草之王的美称。
而多年生黑麦草能量水平在禾本科牧草中最高。
有些品种还有一定的药用价值,如苦荬菜,畜禽很爱吃,长期饲用可减少肠道疾病的发生[7]。
2.1.4 牧草新品种的选育一个育成的优良牧草饲料作物品种可比当地主要推广品种提高产量10%~30%,这是一个稳定可靠%效益显著的增产技术措施。
可以从早熟品种选育、抗寒品种选育、抗病品种选育、抗盐品种选育、抗旱耐热品种选育、耐牧根蘖型苜蓿品种选育、多倍体品种选育、利用杂种优势的品种选育、野生牧草不良性状的改良选育等方面进行品种选育[8]。
2.2 牧草的高产栽培模式轮作可以保证牧草的合理换茬,套种可以提高复种指数,混播可以促使两种或两种以上的牧草优势的互补。
推广轮作、套种、混播等牧草高产栽培模式,可以最大限度地提高牧草的光能利用率,合理利用土壤中的水份和养份,提高牧草的生物学产量,降低杂草和病虫的危害,保证牧草的常年均衡供应。
现介绍几种典型的栽培模式。
2.2.1 禾本科牧草轮作模式:冬牧70黑麦与美洲狼尾草轮作(适合于淮河以北地区)模式:9月下旬至10月上、中旬播种冬牧70黑麦,利用至次年5月上旬,腾茬后播种美洲狼尾草,10月上旬利用完毕,腾茬播种冬牧70黑麦。
此种模式中的美洲狼尾草也可由饲料玉米、苏丹草、籽粒苋或苦荬菜等一年生喜温性牧草取代。
原理:冬牧70黑麦耐寒性较强,立春后早发,叶片繁茂,4月中旬以前为营养生长阶段,以后进入生殖生长阶段。
进入拔节期后,生长势逐渐衰退。
美洲狼尾草、苏丹草、籽粒苋、苦买菜等牧草均属喜温型牧草,耐高温酷暑,是夏季的高产牧草。
冬牧70黑麦与喜温性牧草轮作,一方面可以保证牧草的高产,另一方面可以保证牧草的均衡供应。
高产措施:为促进喜温性牧草早发,提高生物学产量,可对美洲狼尾草、苏丹草进行提前育苗,5月上、中旬进行移栽。
为保证牧草的均衡供应,可将两类牧草分批腾茬,分批播种[9]。
2.2.2 豆科牧草与禾本科牧草套种模式:紫花苜蓿与饲用玉米(苏丹草)套种模式:10月上旬播种紫花苜蓿,次年6月中旬套种饲用玉米或苏丹草。
原理:紫花苜蓿耐寒不耐热,耐旱不耐涝,由于紫花苜蓿春季产量占全年产量的60%~70%;7~9月长势较弱,而饲用玉米和苏丹草均生长期较短适合夏季生长,因而与紫花苜蓿套种,既可保持紫花苜蓿的根系,又可提高土壤养分和水分的利用率,提高单位牧草的产出量。
高产措施:紫花苜蓿首播时间必须在秋季进行,饲用玉米和苏丹草可采取育苗的方式,在6月中旬紫花苜蓿刈割后进行移栽,并在9月底收割完毕,及时清除,保证紫花苜蓿的再生和越冬。
2.2.3 禾本科牧草与叶菜类牧草间作模式:冬牧70黑麦与俄罗斯饲料菜、苏丹草间作模式:10月上旬播种冬牧70黑麦,行距20cm,每两行留一行。
3月下旬至4月上旬栽植俄罗斯饲料菜。
5月中旬冬牧70黑麦收割完毕,然后播种苏丹草,9月下旬收割完毕,然后播种冬牧70黑麦。
原理:俄罗斯饲料菜属于多年生叶菜类牧草,生长的最适宜温度在15℃以上,25℃以下,冬季降霜后叶片枯萎,夏季高温季节生长不良,多在高温季节易发生腐根病。
利用其不耐高温的特点,可套种苏丹草。
一方面可作为俄罗斯饲料菜的越夏率;另一方面在不影响俄罗斯饲料菜产量的同时,增收苏丹草鲜草3000~4000kg。
高产措施:以上三种牧草都是需水、肥较多的牧草品种,必须保证相应的水肥条件才能获得高产。
在种植冬牧70黑麦时,要对土壤进行适度耕翻,并对苏丹草根系进行比较彻底的清除,以促进俄罗斯饲料菜产生新根,增加产量,种植苏丹草既可扳茬,也可育苗移栽[10]。
2.2.4 多种牧草混播模式:冬牧70黑麦与毛苕子混播;多花黑麦革与草木樨混播;多花黑麦草和毛苕子混播;多花黑麦草与箭舌豌豆混播。
冬牧70与多花黑麦草混播;紫花菖蓿和苇状羊茅混播;多年生黑麦草与白三叶混播。
原理:混播牧草,地上的叶.地下的根交错分布,能够更充分利用地上的光热和地下的水肥,生产更多的生物量。
不同生物学特点的牧草混播,可优势互补,即提高产量,又提高品质。
禾本科和豆科牧草混播,可利用豆科牧草固定氮素,增加禾本科牧草粗蛋白含量。
饲喂过程中。
可使豆科牧草的高蛋白和禾本科的高碳水化合物相互补充,提高饲喂效果。
高产措施:混播牧草的播种总量要适宜,同科牧草混播,可用其单播量的35%~40%;不同科牧草混播,可按其单播量的70%~80%[11]。
2.3 生物技术在牧草栽培方面近年来,国外在牧草基因工程育种方面已取得了相当大的进展,而我国牧草育种落后,尤其是现代生物技术的应用为空白。
植物基因工程是在基因水平上改造植物的遗传物质,科学性和精确性高;定向改造植物遗传性状,提高了育种的目的性和可操作性;大大扩展了育种的范围,打破了物种之间的生殖隔离障碍,实现了基因在生物界的公用性,丰富了基因资源。
将基因工程技术应用于牧草育种,对促进无污染绿色养殖业和绿色畜产品的发展,以及我国西部地区生态环境建设都会产生深远的影响。
1991年Hill将编码苜蓿花叶病毒(AWV)外壳蛋白基因转入苜蓿,抗病性明显增强[12]。
而且转基因植株中粗蛋白积累一般占总蛋白的0.05%~0.4%,最高达0.8%[13]。
几丁质酶具有抑制病毒的作用,转几丁质酶基因的苜蓿能抵抗紫色丝核菌和齐整小核菌等真菌病害[14]。
Javie等将番茄PI基因转入苜蓿,转基因植株对鳞翅目昆虫具有良好的抗性[15]。
Hightower等将Mn-SOD基因导入苜蓿,发现抗旱性明显提高[16]。