无人机影像处理教程文件
镜头畸变公式
x ( x x 0 ) ( k 1 r 2 k 2 r 4 ) p 1 r 2 2 ( x x 0 ) 2 2 p 2 ( x x 0 ) ( y y 0 ) ( x x 0 ) ( y y 0 )
y ( y y 0 ) ( k 1 r 2 k 2 r 4 ) p 2 r 2 2 ( y y 0 ) 2 2 p 1 ( x x 0 ) ( y y 0 )
1.2.5 劣势
• 像幅小、基高比小
相同的重叠度情况下,需要跟多的控制点
• 姿态不稳定
旋偏角、俯仰、滚动,甚至导致连接有问题
• 非专业相机
光敏度、像点位移、存在镜头畸变、其它未知的系统 误差
1.3 新起点 抗震救灾(1)
1.3 新起点 抗震救灾(2)
二、无人机影像特点和影响因素分析
2.1 相机 2.2 重叠度与相机姿态角 2.3 小像幅、小基高比 2.4 分辨率与像点位移 2.5 曝光间隔与地面分辨率、地面速度关系
1.2 无人机摄影测量优势与劣势
• 优势
➢ 具有机动性、灵活性和安全性 ➢ 分辨率高 多角度 ➢ 性能优异 ➢ 低成本
• 劣势
➢ 像幅小 ➢ 基高比小 ➢ 姿态不稳定 ➢ 非专业相机
1.2.1 具有机动性、灵活性和安全性
无人飞行器的机动性、灵活性使得它不要求专用 起降场地,升空准备时间短、操作控制较容易、 运行成本低,城市的运动场、广场等都可以作为 起降场地,特别适合在建筑物密集的城市地区和 地形复杂地区及国内南部丘陵、多云地区应用。 它的安全性使得它能够在对人生命有害的危险和 恶劣环境下(如森林火灾、火山、有毒液体等)直 接获取影像,即便是设备出现故障,发生坠机也 无人身伤害。
无人机影像、概述
1.1 为什么无人机摄影测量(UAV) 1.2 无人机摄影测量优势与劣势 1.3 无人机摄影测量的新起点
1.1 为什么UAV-1
• 需求驱动
作为城市精细三维数据获取的主要来源之一,大比 例尺、高分辨率的遥感影像需求日趋显著。现有 的卫星遥感和航空遥感技术虽然能够获取大面积 的地理信息,但因卫星受回归周期、高度等因素影 响,遥感数据分辨率和时相难以保证;载人飞机受空 域管制和气候等因素的影响较大,缺乏机动快速的 能力,同时使用成本也比较高,因此在满足精细城市 三维信息获取的要求方面存在一定不足
1.2.2 分辨率高 多角度
无人飞行器携带的高精度数码成像设备具备垂 直或倾斜摄影的技术能力,不但能竖直拍摄获取 平面影像,还能低空多角度摄影获取建筑物多面 高分辨率纹理影像,这点弥补了卫星遥感和普通 航空摄影获取城市建筑物时遇到的高层建筑遮挡 问题。所获取影像的空间分辨率能达到分米级, 系统获取的高分辨率数码影像可用于高精度数字 地面模型的建立和三维立体景观图的制作。
1.2.3 性能优异
无人飞行器可按预定飞行航线自主飞行、拍 摄,飞行高度从50米到1000米,高度控制 精度达到10米。阴云天气下的低空飞行也 可获取光学影像,并且影像的逼真度超过 雷达影像。不受高度限制,不受山区低云 的影响。
1.2.4 低成本
UAV系统及传感器成本与其它遥感系统 无法相比,一般的单位和个人都有能力负 担。影像数据后处理的设备要求不高、成 本费用低,高档微机就可以作为主要设备, 不需要像传统航摄像片需配置高精度扫描 仪和数字化处理设备。
1.1 为什么UAV-2
• 技术驱动
UAV(Unmanned Air Vehicle ,无人驾驶航空飞行器) 遥感平台的出现为这种应急需求提供了一种新的 技术途径。UAV 无人驾驶,由地面遥控站通过无线 电通信控制飞机的起飞、到达指定空域、实行遥 感操作、以及返回遥控站降落等操作。它可实现 危险区域目标图像实时获取、空中侦察与目标搜 索、环境监测、海区巡视、救援指挥、大气参数 测量、有毒污染地区空中监测等多种载人机无法 完成或不易完成的任务
7.综合分析
通过分析可以看出当地面分辨率一定,飞行速度与曝光 时间成反比。可以看出飞行速度与影像的运动成正比。
因此可以知道飞行速度太快,像点位移会超出限定范围, 这就会使得影像模糊,影响地面分辨率。但同时如果飞行 速度太低,曝光间隔长了,这就会影响作业效率。
r (xx0)2(yy0)2
x0,y0为像主点 x,y为像素坐标系坐标
2.2 重叠度与相机姿态角
• 传统摄影测量
– 航向重叠60% – 旁向重叠30% – 姿态角< 3°
• 无人机摄影测量
– 航向重叠70-85% – 旁向重叠35-55% – 姿态角可达10 °以上
• 姿态不稳定,需要新的初始值计算方法
2.1非专业数码相机
普通定焦型
数码相机
普通单反型
可量测单反型
2.1 镜头畸变
中间小,边缘大,可达20-40像素
无变形
桶装变形 枕形变形 径向变形
切向变形
畸变后果
• 使物点、投影中心、像点三点不再共线 • 影像形状发生非透视畸变 •
– 同名光线不再相交 – 空间后交精度降低 – 重建物体的几何模型变形
2.4 分辨率与像点位移
• 影像地面分辨率影像因素
– 相机本身CCD(CMOS)大小(ccd_size) – 像素分辨率 – 相机镜头焦距(c) – 航高(H)
像点位移 使图像模糊影响有效分辨率
像点位移公式
• (1).飞行器的地面速度 • (2).相机曝光时间 • (3).焦距长度 c • (4).飞行器的飞行高度 • (5).像元大小
2.5 曝光间隔与地面分辨率、地面速度关系
曝光间隔与地面分辨率、地面速度关系
它们的关系可以由下面方程表示
• 由方程(1)容易看出当GSD一定时,相机的曝光间隔与 装载它的飞行器的地面飞行速度成反比关系
t: 曝光时间间隔 GSD: 地面分辨率 Vg: 飞行器的地面飞行速度 P: 航向重叠度 npix: 航向方向的像元个数
• 姿态不稳定,基于灰度的相关系数匹配失 效
• 重叠度增大,增加观测值个数,增加解算 稳定和可靠性
2.3 小像幅、小基高比
基线B
基线B
大像幅
小像幅
航高H
• 由于单幅影像覆盖面积小,正射影像图接 缝工作量变大,像对模型变多,增加了模 型切换和模型接边工作量
• 基高比变小,使得空中三角形不稳定,降 低解算稳定性