2第二章流体力学基础
液柱高单位
1atm 1.01325105 Pa 1mm水柱=9.8Pa 1mm汞柱=133.32Pa
流体力学基础
流体静力学
压力的单位及其表示方法
五、液体对固体壁面的作用力
如不考虑液体自重产生的那部分压力,固体表面上各点在 某一方向上所受静压力的总和便是液体在该方向上作用于固体 表面的力。
1.作用于平面上的力: 当固体表面为一平面时,静止液体对该平面的作用力F 等 于静压力P与平面面积A的乘积,其方向垂直于固体表面,其值
③ 流管:在流场中任画一封闭曲线,只要该曲线不是流线,
经过曲线上每一点作出流线。这些流线组成的管 状表面即为流管。
④ 流束:指流管中由许多流线组成的一束流体。
⑤ 总流:由流管组成的流体称为总流。
流体力学基础
流体动力学
基本概念
3. 通流截面、湿周和水力半径
① 通流截面:又称有效截面、过流截面或有效断面
sin(2
)
sin(
2
)
2 prl
解2:∵ 右半壁内表面在x方向上的投影面积为:
Ax 2r l ∴ Fx p Ax 2 prl
流体力学基础
流体静力学
液体对固体壁面的作用力
作
用
于
平
面
液 压
上 的 力
传
动
中
的
实
作
例
用
于
曲
面
上
的体对固体壁面的作用力
2.2 气体状态方程
外力 从液体内取出的分离体所受的力
内力
流体力学基础
流体静力学
静压力及其特性
2. 流体静压力及其特性
流体处于静止(或平衡)状态时,单位面积上所受到的法 向力,称为静压力(p)。
① 若包含液体某点的微小面积ΔA上所作用的法向力为ΔF, 则该点的静压力p定义为:
F1
F2
F取5分离体Ⅱ
△F △A
lim p
大小
静止流体内任一点的流体静压力在各个方向上都相等, 即:作用于一点的流体静压力的大小与该点的作用面 在空间的方位无关。
虽然同一点的各方向压力相等,但不同点的压力却不是一样
的, 因流体是连续介质,所以压力是空间坐标的连续函数,
即:
P = f ( x. y. z )
流体力学基础
流体静力学
静压力及其特性
流体动力学
基本概念
D当量 d
注意: 通流截面相同时,水力半径大,表明液体与固体壁面
接触少,阻力小,通流能力大,不易堵塞。
相同面积时,不同形状的水力半径不同,其中圆形的 水力半径最大.
流体力学基础
流体动力学
基本概念
4. 流量和平均流速
① 流 量:指单位时间内通过通流截面的流体体积。
q u dA A
* 欧拉方程 —— 理想流体; * 纳维尔—斯托克斯方程 —— 实际流体;
☆热力学第一定律(能量守恒定律)—— 能量方程 (伯努利方程);
流体力学基础
流体动力学
研究方法: ① 欧拉法: 在流体内设定一个控制容积,然后研究流体质点流经 该空间时,流体运动参数的变化规律。
即:欧拉法关注的是流畅中的“空间点”。观察该点 的运动参数随t的变化情况。然后,综合所有空间点即得流 体的运动特点。
空 气: k 1.4
流体力学基础
气体状态方程
6. 多变过程:
在实际的工作过程中,气体的状态变化过程是复杂 的,是一个多变过程,其状态方程为:
p1V1n p2V2n 常数
当n=0时,p1=p2 ,为等压过程; 当n=1时,p1 V1=p2V2 ,为等温过程; 当n=±∞时,为等容过程; 当n=k时,为绝热过程; 当k>n>1时,为多变过程;
指垂直于流束(或总流)内所有流线的横截面。(A)
② 湿 周:指通流截面上液体与固体接触的周边长度。(χ)
③ 水力半径:总流的截面(A)与湿周(χ)的比值。(R)
R A
有效截面 D当量 4 湿周
流体力学基础
流体动力学
基本概念
例:
R A
圆管(r)液体 呈充满状态
R r2 r 2 r 2
流体力学基础
② 平均流速:由于通流截面上的速度分布规律在很多情况下都
是未知的,而流量又可以测出,所以,实际应用常用平均流速 表示:
u dA
v A A
qA
流体力学基础
流体动力学
基本概念
5. 流体的流动状态及判断
雷 诺 实 验
演示图
v很慢 -- 层流
v较大 -- 过渡态 V很大 -- 紊流
(湍流)
① 层流 —— 流体质点在流动方向上分层流动,各层之间互不
② 假设、修正法: 先假定流体为理想流体,产生的误差通过实验数据修 正。
流体力学基础
流体动力学
一、基本概念
1. 理想流体、恒定流动和一维流动
① 理想液体:既无粘性又不可压缩的液体,是一种假想液体; ② 恒定流动:又称稳定流动,所有运动参数(如:速度、压
力、密度等)均与时间(t)无关。反之,只要有一个参数与 t 有关,则称为非恒定流动;
p a
绝对真空
▪绝 对 压 力 : p j pa gh pa pb
▪相 对 压 力 ( 表 压 ) : pb p j pa gh
▪真空压力(真空度): pv pa p j pb ghv
流体力学基础
流体静力学
压力的单位及其表示方法
2. 压力的换算:
应力 单位 法定计量单位
1 N m2 1 Pa
二、重力作用下静止液体的压力分布 1. 静 压 力 基 本 方 程
如图所示:容器中静止液 体所受的力有:液体重力 (FG)、液面上压力(p0) 及容器壁面作用在液体上 的反压力。
该液体中任意一点的静压力可从液体中取微元体进行研究, 微元体在垂直方向上的力的平衡方程为:
p A p0 A FG A p0 A gh A
三、帕斯卡原理(静压传递原理)
密闭容器内,施加于静止液体内任一点上的压力,将 以等值同时传给液体各点。它是液压传动的基本原理。
如:液压千斤顶、水压机等均依此原理制成。
流体力学基础
流体静力学
帕斯卡原理
静压传动的特点:
① 传动必须在密闭容器中进行; ② 传递的压力(p)取决于外负载的大小,而与流量Q无关;
压力值相等;不互溶液体的
ρ1
h1
h2
分界面的压力相等,即:
p 1
p 2
p1 p2
ρ2
流体力学基础
流体静力学
重力作用下静止液体的压力分布
④ 液面上的作用力p0将等值的传递到液体内的任意点。 当p0发生变化时,各点的压力值也相应的发生变化。
帕斯卡原理
流体力学基础
流体静力学
重力作用下静止液体的压力分布
为:F=PA。
2.作用于曲面上的力: 当固体表面为一曲面时,曲面上各点处静压力是不平行的, 液体作用在曲面上的力在不同方向也是不一样的。要计算液体 作用在曲面上的力时,必须明确所计算的方向。
流体力学基础
流体静力学
液体对固体壁面的作用力
具体的计算方法如下所示:
① 求液体对固体壁面在某一方向上的分力。
干扰和掺混,流线呈平行状态的向前流动。
产生条件:
流 体 速 度 很 慢; 流体的粘性力较大。
流体力学基础
流体动力学
基本概念
流体力学基础
流体动力学
基本概念
② 紊流 —— 流体流动时各质点在不同方向上作复杂的、无规
则的、互相干扰的向前运动。即微团在其它方向上存在脉动, 但前进大方向一致。
注意
① 在“宏观”上,漩涡≠紊流; ② 在“微观”上,分子运动≠紊流; ③ 在紊流中“紧贴管壁”的流体为层流态,称为 “层流底层”,或“附面层”,“边界层”。这 一薄层对“三传”的影响很大。
③ 一维流动:流动参数仅仅依赖于一个坐标。
一维流动是最简单的流动。在液压传动中,一般常把封闭管 道内液体的流动按一维流动处理,再用实验数据修正结果。
流体力学基础
流体动力学
基本概念
2. 迹线、流线、流管、流束和总流
① 迹线:流场中流体的某一质点在一段时间内在空间的运动轨迹。
② 流线:表示某一瞬时,经过流体流动空间中的许多点作出的一
解1: 取长度为 l ,宽度为ds的微小面积dA。
dA l ds l r d
压力油对dA的作用力为 dF=p ·dA ,方向为A 的法线方向。
dFx dF cos plr cos d
流体力学基础
流体静力学
液体对固体壁面的作用力
2
积分得: Fx plr cos d 2
prl
流体力学基础
气体状态方程
2.3 流体动力学
研究流体动力学的主要目的是为了研究液体流动 时的密度(ρ)、压力(p)和流速(v)等的变化规 律,以及流动过程中的各种能量损失,液阻特性,流 经各类孔口的流量计算问题。
流体力学基础
流体动力学
三个基本定律:
☆物质不灭定律(质量守恒定律)—— 连续方程;
☆牛顿第二运动定律 —— 动量传输方程;
条光滑曲线。在该瞬时,流线上各质点的速度方向与该线相切, 并指向流体的流动方向。
在稳定(定常)流动时,流线不随时间而变化,这样流线 就与迹线重合。由于流动液体中任一质点在其一瞬时只能有一个 速度,所以流线之间不可能相交,也不可能突然转折。
流体力学基础
流体动力学
基本概念
流体力学基础
流体动力学
基本概念
流体力学基础
流体静力学
一、液体静压力及其特性
1. 作 用 于 流 体 上 的 力
作用在液体上的力有两种,即质量力和表面力。