传递过程原理 第一章
二、系统与控制体
系统 —包含确定不变物质(流体质点)的集合, 系统以外的一切称为环境。 u 特点:系统与环境之间无质量交 u 换,但在界面上有力的作用及能 量的交换。系统的边界随着环境 流体一起运动,因此其体积、位 置和形状是随时间变化的。 系统
在传递过程中,系统指由确定流体质点所组成 的流体元。
d A j M dy
e A
涡流传递通量=-涡流扩散系数×涡流浓度梯度 涡流传递>>分子传递
第一章 传递过程概论
1.1 传递过程的分类 1.2 动量、热量与质量传递的类似性 1.3 传递过程的研究方法
一、守恒定律与衡算方法 二、系统与控制体
三、拉格朗日观点和欧拉观点 四、几个常用算子
一、守恒定律与衡算方法
(1)宏观水平上描述 质量衡算 能量衡算 输入的质量流率-输出的质量流率 =累积的质量流率 输入的热量速率-流出的热量速率+加入的 热速率-系统对外作功速率=累积的热速率 输入的动量速率-流出的动量速率+作用在 体系上的合外力=累积的动量速率
动量衡算
一、守恒定律与衡算方法
总衡算的局限性:
总衡算只能考察系统的流入、流出以及内部的 平均变化情况,系统内部物理量如温度、压力、 密度、速度等的变化规律无法得知。
1. 分子动量通量 对牛顿粘性定律作量纲分析,设密度为常数:
μ d ( ρu ) d ( ρu ) τ== -ν ρ dy dy
一、分子传递的通用表达式
量纲分析
N kg m/s kg m/s 动量 [ 2 ][ ][ 2 ] 2 m m m s 面积 × 时间
2
3
kg m/s 动量 u [kg/m m/s] [ 3 ] m 体积
二、扩散传递与对流传递
涡流动量、热量与质量传递可表示为: d ( ux ) r dy d ( c pt ) q e ( ) H
A dy
d A j M dy
e A
涡流传递>>分子传递
二、扩散传递与对流传递
3.对流传递的概念
由于流体作宏观运动引起的动量、热量与质量 的迁移过程,该过程仅发生在流体运动时:
dux dy
-单位面积上的剪切力称为剪应力; -比例系数,称为流体的粘度;
du x -速度梯度。 dy
二、扩散传递与对流传递
傅立叶定律
描述分子导热的基本定律 q dt = -k A dy
t1> t2 > t3
热流方向
q/A -导热通量;
dt -温度梯度。 dy
k
-介质的导热系数;
t1> t2 > t3
t1 t2 t3
热流方向
一、平衡过程与速率过程
3. 质量传递过程—当物系中的物质存在化学势差 异时,则发生由高化学势区向低化学势区域的质量 传递。 化学势的差异可以由浓度、温度、压力或电场力 所引起。最常见的是浓度差引起的质量传递过程。 此时混合物中的某个组分由高浓度向低浓度区扩散 传递。
dρ A dy -质量浓度梯度
DAB
-质量扩散系数
质量通量=-质量扩散系数×质量浓度梯度
二、分子传递的类似性
动量通量=-动量扩散系数×动量浓度梯度 热量通量=-热量扩散系数×热量浓度梯度 质量通量=-质量扩散系数×质量浓度梯度
通量=-扩散系数×浓度梯度
, , DAB 的量纲相同,扩散系数m2/s
一、分子传递的通用表达式
量纲分析
q A
[
J m s
2
]
热量 面积× 时间
ρ c t p
kg J J 热量 [ 3 ].[ ].[K] [ 3 ] m kg K m 体积
3 2 J m kg.K m .[ ].[ ][ ] J s m.s.K kg
三、拉格朗日观点和欧拉观点
根据研究所选定的衡算范围是控制体还是系统, 有两种相应的研究方法: 欧拉观点(Euler viewpoint) 拉格朗日观点(Lagrange viewpoint)
三、拉格朗日观点和欧拉观点
欧拉观点 着眼于流场中的空间点,以流场中的固定空 间点(控制体)为考察对象,研究流体质点通 过空间固定点时的运动参数随时间的变化规律。 然后综合所有空间点的运动参数随时间的变化, 得到整个流场的运动规律。
一、分子传递的通用表达式
量纲分析结果 τ -动量通量 d ( u ) dy -动量浓度梯度 ν -动量扩散系数 动量通量=-动量扩散系数×动量浓度梯度
一、分子传递的通用表达式
2. 分子热量通量 傅立叶定律的量纲分析:
d ( ρc p t ) q k d ( ρc p t ) == -α A ρc p dy dy
kg m m v [ m s kg ] [ s ]
3 2
一、分子传递的通用表达式
动量传递机理: 层流—分子动量传递 两层流体速度不同,具有不同的动量浓度。在 动量梯度的作用下,动量将自发地由高动量区向 低动量区转移。 微观上,速度较高的流层中的分子以随机运动 方式进入速度较慢的流层中;低速流层中亦有等 量随机运动的分子进入高速流层,实现动量交换。
ux t 动量的对流传递速率: ρux ux A 热量的对流传递速率: ρcptuxA A
kg m s / s
1
J/s
第一章 传递过程概论
1.1 传递过程的分类 1.2 动量、热量与质量传递的类似性
一、分子传递的通用表达式 二、分子传递的类似性
三、涡流传递的类似性
一、分子传递的通用表达式
总衡算的方法在化工设计计算中常用—物料衡 算与热量衡算等。
一、守恒定律与衡算方法
(2)微观水平上描述
微观衡算(微分衡算)—在研究对象内部选择 一个有代表性的微分点,将守恒定律应用于该点。 通过衡算,得出一组描述动量、热量与质量变化的 微分方程,成为变化方程(Equation of change)。 然后通过积分,获得系统内部的速度、温度及浓度 的变化规律。这些变化规律对于传递速率的求解必 不可少。
一、守恒定律与衡算方法
(3)分子水平上描述 根据分子结构、分子间的相互作用,作分子水平 上的考察,对于动量、热量与质量传递的理解是有 帮助的。如各种传递系数(黏度、扩散性、导热性 等)可以应用流体的分子运动理论求解。
一、守恒定律与衡算方法
本课程主要讨论微分衡算的方法,通过建立 描述各种过程的数学模型,研究动量、热量与质
体积固定
三、拉格朗日观点的流体质点(系统), 跟踪观察每一个流体质点的运动轨迹及其速度、 压力等量随时间的变化。然后综合所有流体质 点的运动,得到整个流场的运动规律。
质点(质量固定)
三、拉格朗日观点和欧拉观点
原则上讲,两种方法所得结果一致,都可采用。
四、几个常用算子
量传递的速率。
二、系统与控制体
根据所考察的对象不同,选用衡算范围的方法 有两种: 控制体 系 统
二、系统与控制体
控制体 —具有确定不变的空间区域(体积)。 特点:相对于坐标其体积不变, 包围该空间体积的界面称为控 制面。流体可以自由进出控制 体,控制面上可有力的作用和 能量交换。其特点是体积、位 置固定,输入和输出控制体的 物理量随时间改变。 在传递过程中,控制体指流体在流动过程中所 通过的固定不变的空间区域。
第一章 传递过程概论
传递现象普遍存在于自然界和工程领域, 三种传递过程有许多共同规律。 本章介绍与课程有关的基本概念。
对流+辐射
幻灯片 11 幻灯片 23
2015年12月2日
第一章 传递过程概论
1.1 传递过程的分类
一、平衡过程与速率过程 二、扩散传递与对流传递
一、平衡过程与速率过程
大量的物理、化学现象中,同时存在着正反两个 方向的变化,如: 固体的溶解和析出,升华与凝华、可逆化学反应 当过程变化达到极限,就构成平衡状态。如化学 平衡、相平衡等。此时,正反两个方向变化的速率 相等,净速率为零。 不平衡时,两个方向上的速率不等,就会发生某 种物理量的转移,使物系趋于平衡。
所谓算子是一种数学符号缩写的算符。本课程中 常用的算子有:
(1)哈密尔顿算子▽;
(2)拉普拉斯算子Δ;
D (3)随体导数算子 D
四、几个常用算子 1、▽ 算子 (Hamilton Operators)
哈密尔顿算子在直角坐标下的展开式(下同):
i j k x y z
哈密尔顿算子是一个矢性、微分算子,它具有 矢量和微分双重性质。 在本课程中,有关哈密尔顿算子的运算有下面 三种形式:
物理过程的速率:
1. 动量传递过程—物体的质量与速度的乘积被定 义为动量,速度可认为是单位质量物体的动量。因此, 同一物体,速率不同,其动量也不同。 在流体中,若两个相邻的流体层的速度不同,则将 发生由高速层向低速层的动量传递。 u2
动量传递方向
u1
一、平衡过程与速率过程
2. 热量传递过程—当物系中各部分之间的温度存 在差异时,则发生由高温区向低温区的热量传递。
一、平衡过程与速率过程
热力学:探讨平衡过程的规律,考察给定条件下 过程能否自动进行?进行到什么程度?条件变化对 过程有何影响等。 动力学:探讨速率过程的规律,化学动力学研究 化学变化的速率及浓度、温度、催化剂等因素对化 学反应速率的影响;传递动力学研究物理过程变化 的速率及有关影响因素。
一、平衡过程与速率过程
一、分子传递的通用表达式
量纲分析结果
q/A -热量通量
d(ρc p t) dy
-热量浓度梯度
-热量扩散系数
热量通量=-热量扩散系数×热量浓度梯度
一、分子传递的通用表达式
3. 分子质量通量
费克定律的量纲分析:
j A = -DAB