当前位置:文档之家› 17世纪牛顿的数学成就

17世纪牛顿的数学成就

17世纪牛顿对微积分的贡献
17世纪数学最重要的成就之一是微积分的创立,而牛顿就对微积分做了许多重要的贡献。

流数术的初建
牛顿对微积分问题的研究始于1664年秋,当时他反复阅读笛卡儿《几何学》,对笛卡儿求切线的“圆法”发生兴趣并试图寻找更好的方法。

说在此时,牛顿首创了小o记号表示x的无限小且最终趋于零的增量。

1665年夏至1667年春,牛顿在家乡躲避瘟疫期间,继续探讨微积分并取得了突破性进展。

据他自述,1665年11月发明“正流数术”(微分法),次年5月又建立了“反流数术”(积分法)。

1666年10月,牛顿将前两年的研究成果整理成一篇总结性论文,此文现以《流数简论》(Tract on Fluxions)著称,当时虽未正式发表,但在同事中传阅。

《流数简论》(以下简称《简论》)是历史上第一篇系统的微积分文献。

《流数简论》反映了牛顿微积分的运动学背景。

该文事实上以速度形式引进了“流数”(即微商)概念,虽然没有使用“流数”这一术语。

牛顿在《简论》中提出微积分的基本问题如下:
(a)设有两个或更多个物体A,B,C,…在同一时刻内描画线段x,y ,z。

已知表示这些线段关系的方程,求它们的速度p,q,r的关系。

(b)已知表示线段x和运动速度p、q之比p/q 的关系方程式,求另一线段y。

牛顿对多项式情形给出(a)的解法。

对于问题(b),牛顿的解法实际上是问题(a)的解的逆运算,并且也是逐步列出了标准算法。

特别重要的是,《简论》中讨论了如何借助于这种逆运算来求面积,从而建立了所谓“微积分基本定理”当然,《简论》中对微积分基本定理的论述并不能算是现代意义下的严格证明。

牛顿在后来的著作中对微积分基本定理又给出了不依赖于运动学的较为清楚的证明。

在牛顿以前,面积总是被看成是无限小不可分量之和,牛顿则从确定面积的变化率入手通过反微分计算面积。

前面讲过,面积计算与求切线问题的互逆关系,以往虽然也曾被少数人在特殊场合模糊地指出,但牛顿却能以足够的敏锐与能力将这种互逆关系明确地作为一般规律揭示出来,并将其作为建立微积分普遍算法的基础。

正如牛顿本人在《流数简论》中所说:一旦反微分问题可解,许多问题都将迎刃而解。

这样,牛顿就将自古希腊以来求解无限小问题的各种特殊技巧统一为两类普遍的算法——正、反流数术亦即微分与积分,并证明了二者的互逆关系而将这两类运算进一步统一成整体。

这是他超越前人的功绩,正是在这样的意义下,我们说牛顿发明了微积分。

在《流数简论》的其余部分,牛顿将他建立的统一算法应用于求曲线切线、曲率、拐点、曲线求长、求积、求引力与引力中心等16类问题,展示了他的算法的极大的普遍性与系统性。

流数术的发展
《流数简论》标志着微积分的诞生,但它在许多方面是不成熟的。

牛顿于1667年春天回到剑桥,对自己的微积分发现未作宣扬。

他在这一年10月当选为三一学院成员,次年又获硕士学位,并不是因为他在微积分方面的工作,而是因为在望远镜制作方面的贡献。

但从那时起直到1693年大约四分之一世纪的时间里,牛顿始终不渝努力改进、完善自己的微积分学说,先后定成了三篇微积
分论文,它们分别是:
(1)《运用无限多项方程的分析》(De Analysi per Aequationes Numero Terminorum Infinitas,简称《分析学》,完成于1669年);
(2)《流数法与无穷级数》(Methodus Fluxionum et Serierum Infinitarum,简称《流数法》,完成于1671年);
(3)《曲线求积术》(Tractatus de Quadratura Curvarum,简称《求积术》,完成于1691年)。

这三篇论文,反映了牛顿微积分学说的发展过程,并且可以看到,牛顿对于微积分的基础先后给出了不同的解释。

第一篇《分析学》是牛顿为了维护自己在无穷级数方面的优先权而作。

1668年苏格兰学者麦卡托(N.Mercator)发表了对数级数的结果,这促使牛顿公布自己关于无穷级数的成果。

《分析学》利用这些无穷级数来计算流数、积分以及解方程等,因此《分析学》体现了牛顿的微保健与无穷级数紧密结合的特点。

关于微积分本身,《分析学》有简短的说明。

论文一开始就叙述了计算曲线y=f(x)下面积的法则。

x(m+n)n。

牛顿在论证设有y=αx m n表示的曲线,牛顿论证所求面积z=nα
m+n
中取x而不是时间t的无限小增量“瞬”为o,以x+o代x,z+oy代z,则
(x+o)(m+n)n。

z+oy=nα
m+n
用二项式定理展示后以o除两边,略去o的项,即得y=αx m n。

反过来就知
x(m+n)n。

牛顿接着给出了另一条法则:若y值曲线y=αx m n下的面积是z=nα
m+n
是若干项之和,那么所求面积就是由其中每一项得到的面积之和,这相当于逐项积分定理。

由上述可知,牛顿《分析学》以无限小增量“瞬”为基本概念,但却回避了《流数简论》中的运动学背景而将“瞬”看成是静止的无限小量,有时直截了当令为零,从而带上了浓厚的不可分量色彩。

第二篇论文《流数法》可以看作是1666年《流数简论》的直接发展。

牛顿在其中又恢复了运动学观点,但对以物体速度为原形的流数概念作了进一步提炼,并首次正式命名为“流数”(fluxion)。

牛顿后来对《流数法》中的流数概念作了如下解释:
“我把时间看作是连续的流动或增长,而其他量则随着时间而连续增长,我从时间的流动性出发,把所有其他量的增长速度称之为流数,又从时间的瞬息性出发,把任何其他量在瞬息时间内产生的部分称之为瞬”。

《流数法》以清楚明白的流数语言表述微积分的基本问题为:
“已知表示量的流数间的关系的方程,求流量间的关系”。

流数语言的使用,使牛顿的微积分算法在应用方面获得了更大的成功。

《曲线求积术》是牛顿最成熟的微积分著述。

牛顿在其中改变了对无限小量的依赖并批评自己过去那种随意忽略无限小瞬o的做法:“在数学中,最微小的误差也不能忽略。

在这里,我认为数学的量不是由非常小的部分组成的,而是用连续的运动来描述”。

在此基础上定义了流数概念之后,牛顿写道:“流数之比非常接近于在相等但却很小的时间间隔内生成的流量的增量比。

确切地说,它们构
成增量的最初比”。

牛顿接着借助于几何解释把流数理解为增量消逝时获得的最终比。

他举例说明自己的新方法如下:
为了求y=x n的流数,设x变为x+o,则变为
(x+o)n=x n+nox n−1+n(n−1)
2
o2x n−2+⋯,构成两变化的“最初比”:
x+o−x (x+o)n−x n =1
nx n−1+n(n−1)
2
x n−2o+⋯
,然后“设增量o消逝,他们的最终比就是
1
nx
”,这也是x的流数与x n的流数之比。

这就是所谓“首末比方法”,它相当于求函数自变量与因变量变化之比的极限,因而成为极限方法的先导。

牛顿对于发表自己的科学著作态度谨慎。

除了两篇光学著作,他的大多数菱都是经朋友再三催促才拿出来发表。

上述三篇论文发表都很晚,其中最先发表的是最后一篇《曲线求积术》,1704年载于《光学》附录;《分析学》发表于1711年;而《流数法》则迟至1736年才正式发表,当时牛顿已去世。

牛顿微积分学说最早的公开表述出现在1687年出版的力学名著《自然哲学的数学原理》(Philosophiae naturalis principia mathematica,以下简称《原理》)之中,因此《原理》也成为数学史上的划时代著作。

相关主题