当前位置:文档之家› 粒子的波动性 概率波 不确定性关系

粒子的波动性 概率波 不确定性关系

粒子的波动性 概率波 不确定性关系一、光是什么?1、光是一种电磁波,有波长和频率 c =νλ2、不同颜色的光在真空中传播速度都相同,等于c3、不同颜色的光频率不同。

光的颜色(频率)由光源来决定,在不同介质中传播时波速会变,但频率不变。

4、不同颜色的光在同一种介质中传播速度不相同,频率大的速度小。

二、光电效应1、光电效应:当光线照射在金属表面时,金属中有电子逸出的现象,称为光电效应。

逸出的电子称为光电子。

光电子定向移动形成的电流叫光电流.2、光电效应实验规律(1)存在饱和电流:光照不变,增大U AK ,G 表中电流达到某一值后不再增大,即达到饱和值。

因为光照条件一定时,K 发射的电子数目一定。

实验表明:入射光越强,饱和电流越大,单位时间内发射的光电子数越多。

(2)存在遏止电压和截止频率存在遏止电压U C :使光电流减小到零的反向电压,若速度最大的是v c ,则c 221eU v m c e = 实验表明:对于一定颜色(频率)的光,无论光的强弱如何,遏止电压是一样的。

光的频率改变,遏止电压也会改变。

存在截止频率c ν:经研究后发现,对于每种金属,都有相应确定的截止频率c ν(极限频率)。

当入射光频率ν>c ν时,电子才能逸出金属表面;当入射光频率ν< c ν时,无论光强多大也无电子逸出金属表面。

(3)具有瞬时性实验结果:即使入射光的强度非常微弱,只要入射光频率大于被照金属的截止频率,电流表指针也几乎是随着入射光照射就立即偏转。

更精确的研究推知,光电子发射所经过的时间不超过10-9秒(这个现象一般称作“光电子的瞬时发射”)。

结论:光电效应在极短的时间内完成。

一般不超过10-9秒. 三、光电效应解释中的疑难1、光越强,光电子的初动能应该越大,所以遏止电压U C 应与光的强弱有关。

2、不管光的频率如何,只要光足够强,电子都可获得足够能量从而逸出表面,不应存在截止频率。

3、如果光很弱,按经典电磁理论估算,电子需几分钟到十几分钟的时间才能获得逸出表面所需的能量,这个时间远远大于10-9S 。

以上三个结论都与实验结果相矛盾的,所以无法用经典的波动理论来解释光电效应。

四、爱因斯坦的光量子假设爱因斯坦从普朗克的能量子说中得到了启发,他提出:1、光子:光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。

这些能量子后来被称为光子。

νh E =2、爱因斯坦的光电效应方程一个电子吸收一个光子的能量hν后,一部分能量用来克服金属的逸出功W 0,剩下的表现为逸出后电子的初动能E k ,即:0W E h k +=ν或0W h E k -=ν221c e k v m E =光电子最大初动能,0W 金属的逸出功,使电子脱离某种金属所做功的最小值 3、光子说对光电效应的解释(1)爱因斯坦方程表明,光电子的初动能E k 与入射光的频率成线性关系,与光强无关。

只有当hν>W 0时,才有光电子逸出,就是光电效应的截止频率(2)电子一次性吸收光子的全部能量,不需要积累能量的时间,光电流自然几乎是瞬时发生的。

(3)光强较大时,包含的光子数较多,照射金属时产生的光电子多,因而饱和电流大。

五、康普顿效应1、光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。

2、康普顿效应1923年康普顿在做 X 射线通过物质散射的实验时,发现散射线中除有与入射线波长λ0相同的射线外,还有波长比λ0更大的成分。

3、康普顿效应解释中的疑难(1)经典电磁理论在解释康普顿效应时遇到的困难根据经典电磁波理论,当电磁波通过物质时,物质中带电粒子将作受迫振动,其频率等于入射光频率,所以它所发射的散射光频率应等于入射光频率。

如果入射X 光是某种波长的电磁波,散射光也应该是X 光,不会出现波长更长的波。

(2)光子理论对康普顿效应的解释①若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。

②若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。

4、康普顿散射实验的意义(1)有力地支持了爱因斯坦“光量子”假设;(2)首次在实验上证实了“光子具有动量”的假设;(3)证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。

六、光子的动量2mc E = νh E = 2c h m ν=∴ λννh c h c c h mc P ==∙==∴2 动量能量是描述粒子的,频率和波长则是用来描述波的。

七、光的波粒二象性1.光的波粒二象性(1)光的干涉和衍射现象说明光具有波动性,光电效应和康普顿效应说明光具有粒子性.(2)光子的能量ε=hν,光子的动量p =h /λ.(3)光子既有粒子的特征,又有波的特征;即光具有波粒二象性.2.对光的波粒二象性的理解(1)大量光子产生的效果显示出波动性;个别光子产生的效果显示出粒子性.(2)光子和电子、质子等实物粒子一样,具有能量和动量.和其他物质相互作用时,粒子性起主导作用;在光的传播过程中,光子在空间各点出现的可能性的大小(概率),由波动性起主导作用,因此称光波为概率波.(3)光子的能量与其对应的频率成正比,而频率是描述波动性特征的物理量,因此ε=hν揭示了光的粒子性和波动性之间的密切联系.(4)频率低、波长长的光,波动性特征显著,而频率高、波长短的光,粒子性特征显著.八、物质波 概率波1.任何运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它相对应,这种波叫物质波,又叫德布罗意波.物质波波长、频率的计算公式为λ=h p ,ν=εh. 我们之所以看不到宏观物体的波动性,是因为宏观物体的动量太大,德布罗意波长太小的缘故.2.德布罗意假说是光的波粒二象性的推广,即光子和实物粒子都既具有粒子性又具有波动性,即具有波粒二象性.与光子对应的波是电磁波,与实物粒子对应的波是物质波.3.物质波的实验验证(1)1927年戴维孙和汤姆孙分别利用晶体做了电子束衍射的实验,从而证实了电子的波动性.(2)人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=εh和λ=h p关系同样正确. 4.经典的粒子和经典的波(1)经典粒子有一定的质量和空间大小,遵循牛顿运动定律,在任意时刻有确定的位置和速度,在时空中有确定的轨道.(2)经典波的基本特征是:具有频率和波长,即具有时空的周期性.5.概率波(1)光波是一种概率波光的波动性不是光子之间相互作用的结果而是光子自身固有的性质,光子在空间出现的概率可以通过波动的规律确定,所以,光波是一种概率波.(2)物质波也是一种概率波对于电子和其他微观粒子,单个粒子的位置是不确定的,但在某点出现的概率的大小可以由波动的规律确定,而且对于大量粒子,这种概率分布导致确定的宏观结果,所以物质波也是概率波.九、不确定性关系1.单缝衍射现象中,粒子在挡板左侧的位置是完全不确定的,即通过挡板前粒子的位置具有不确定性.2.单缝衍射现象中,粒子通过狭缝后,在垂直原来运动方向的动量是不确定的,即通过挡板后粒子的动量具有不确定性.3.微观粒子运动的位置不确定量Δx 和动量的不确定量Δp 的关系式为Δx ·Δp ≥h 4π,其中h 是普朗克常量.4.不确定性关系告诉我们,如果要更准确地确定粒子的位置(即Δx 更小),那么动量的测量一定会更不准确(即Δp 更大),也就是说,不可能同时准确地知道粒子的位置和动量,也不可能用“轨迹”来描述粒子的运动.微观粒子的运动状态只能通过概率波的统计规律描述.【例1】关于光子说的基本内容有以下几点,不正确的是( )A .在空间传播的光是不连续的,而是一份一份的,每一份叫一个光子B .光是具有质量、能量和体积的物质微粒子C.光子的能量跟它的频率成正比D.光子客观并不存在,而是人为假设的答案:B【例2】关于光电效应下述说法中正确的是( )A.光电子的最大初动能随着入射光的强度增大而增大B.只要入射光的强度足够强,照射时间足够长,就一定能产生光电效应C.在光电效应中,饱和光电流的大小与入射光的频率无关D.任何一种金属都有一个极限频率,低于这个频率的光不能发生光电效应答案:D【例3】爱因斯坦因提出了光量子概念并成功地解释光电效应的规律而获得1921年诺贝尔物理学奖.某种金属逸出光电子的最大初动能E km与入射光频率ν的关系如图所示,其中ν0为极限频率,从图中可以确定的是()A.逸出功与ν有关B.E km与入射光强度成正比C.当ν<ν0时,会逸出光电子D.图中直线的斜率与普朗克常量有关答案:D【例4】频率为ν的光照射某金属时,产生光电子的最大初动能为E km.改用频率为2ν的光照射同一金属,所产生光电子的最大初动能为(h为普朗克常量)()A.E km-hνB.2E kmC.E km+hνD.E km+2hν答案:C【例5】如图所示, 在研究光电效应的实验中, 发现用一定频率的A单色光照射光电管时, 电流表指针会发生偏转, 而用另一频率的B单色光照射时不发生光电效应()A.A光的频率大于B光的频率B.B光的频率大于A光的频率C.用A光照射光电管时流过电流表G的电流方向是a流向bD.用A光照射光电管时流过电流表G的电流方向是b流向a答案:AC【例6】对光的认识,以下说法中正确的是()A.个别光子的行为表现出粒子性,大量光子的行为表现出波动性B.高频光是粒子,低频光是波C.光表现出波动性时,就不具有粒子性了;光表现出粒子性时,就不再具有波动性了D.光的波粒二象性应理解为:在某种场合下光的波动性表现得明显,在另外某种场合下,光的粒子性表现明显解析个别光子的行为表现为粒子性,大量光子的行为表现为波动性;光与物质相互作用,表现为粒子性,光的传播表现为波动性,光的波动性与粒子性都是光的本质属性,频率高的光粒子性强,频率低的光波动性强,光的粒子性表现明显时仍具有波动性,因为大量粒子的个别行为呈现出波动规律,故正确选项为A、D.答案AD【例7】下列关于德布罗意波的认识,正确的解释是()A.光波是一种物质波B.X光的衍射证实了物质波的假设是正确的C.电子的衍射证实了物质波的假设是正确的D.宏观物体运动时,看不到它的衍射或干涉现象,所以宏观物体不具有波动性解析宏观物体由于动量太大,德布罗意波长太小,所以看不到它的干涉、衍射现象,但仍具有波动性,D项错;X光是波长极短的电磁波,是光子,它的衍射不能证实物质波的存在,B项错.只有C项正确.答案 C【例8】物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光的强度,使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只出现一些不规则的点子;如果曝光时间足够长,底片上就出现了规则的干涉条纹,对这个实验结果下列认识正确的是()A.曝光时间不长时,光子的能量太小,底片上的条纹看不清楚,故出现不规则的点子B.单个光子的运动表现出波动性C.干涉条纹中明亮的部分是光子到达机会较多的地方D.只有大量光子的行为才能表现出波动性解析光是一种概率波,对于一个光子通过单缝落在何处,是不确定的,但概率最大的是中央亮纹处,可达95%以上,还可能落到暗纹处,不过落在暗纹处的概率最小(注意暗纹处并非无光子到达).故C、D选项正确.答案CD【例9】利用金属晶格(大小约10-10 m)作为障碍物观察电子的衍射图样,方法是使电子通过电场加速后,让电子束照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m ,电荷量为e ,初速度为0,加速电压为U ,普郎克常量为h ,则下列说法中正确的是( )A .该实验说明了电子具有波动性B .实验中电子束的德布罗意波长为λ=h 2meUC .加速电压U 越大,电子的衍射现象越明显D .若用相同动能的质子替代电子,衍射现象将更加明显答案 AB解析 得到电子的衍射图样,说明电子具有波动性,A 正确;由德布罗意波长公式λ=h p而动量p =2mE k =2meU两式联立得λ=h 2meU,B 正确; 由公式λ=h 2meU可知,加速电压越大,电子的波长越小,衍射现象越不明显;用相同动能的质子替代电子,质子的波长小,其衍射现象不如电子的衍射现象明显.故C 、D 错误.【例10】在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上,假设现在只让一个光子通过单缝,那么该光子( )A .一定落在中央亮纹处B .一定落在亮纹处C .可能落在暗纹处D .落在中央亮纹处的可能性最大答案 CD解析 根据光波是概率波的概念,对于一个光子通过单缝落在何处,是不确定的,但概率最大的是落在中央亮纹处.当然也可落在其他亮纹处,还可能落在暗纹处,不过,落在暗纹处的概率很小,故C 、D 选项正确.【例11】设子弹的质量为0.01 kg ,枪口直径为0.5 cm ,试求子弹射出枪口时横向速度的不确定量.解析 枪口直径可以当作子弹射出枪口位置的不确定量Δx ,由于Δp x =m Δv x ,由不确定性关系公式得子弹射出枪口时横向速度的不确定量Δv x ≥h 4πm Δx = 6.63×10-344×3.14×0.01×0.5×10-2 m/s ≈1.06×10-30 m/s答案 1.06×10-30 m/s课外练习1.说明光具有粒子性的现象是()A.光电效应B.光的干涉C.光的衍射D.康普顿效应答案AD2.下列说法中正确的是()A.光的波粒二象性学说就是牛顿的微粒说加上惠更斯的波动说组成的B.光的波粒二象性彻底推翻了麦克斯韦的电磁理论C.光子说并没有否定电磁说,在光子的能量ε=hν中,ν表示波的特性,ε表示粒子的特性D.光波不同于宏观观念中那种连续的波答案CD解析光的波动性不是惠更斯的波动说中宏观意义下的机械波.光的粒子性是指光的能量是一份一份的,不是牛顿微粒说中的经典微粒.光子说与电磁说不矛盾,它们是不同领域的不同表述.3.关于光子和运动着的电子,下列论述正确的是()A.光子和电子一样都是实物粒子B.光子能发生衍射现象,电子不能发生衍射现象C.光子和电子都具有波粒二象性D.光子具有波粒二象性,而电子只具有粒子性答案 C解析物质可分为两大类:一是质子、电子等实物;二是电场、磁场等,统称场.光是传播着的电磁场.根据物质波理论,一切运动的物体都具有波动性,故光子和电子都具有波粒二象性.综上所述,C选项正确.4.下列物理实验中,能说明粒子具有波动性的是()A.通过研究金属的遏止电压与入射光频率的关系,证明了爱因斯坦光电效应方程的正确性B.通过测试多种物质对X射线的散射,发现散射射线中有波长变大的成分C.通过电子双缝实验,发现电子的干涉现象D.利用晶体做电子束衍射实验,证实了电子的波动性答案CD5.如果一个电子的德布罗意波长和一个中子的相等,则它们的________也相等.A .速度B .动能C .动量D .总能量答案 C解析 根据德布罗意波长公式p =h λ,因此选C. 6、利用光子说对光电效应的解释,下列说法正确的是( )A .金属表面的一个电子只能吸收一个光子B .电子吸收光子后一定能从金属表面逸出,成为光电子C .金属表面的一个电子吸收若干个光子,积累了足够的能量才能从金属表面逸出D .无论光子能量大小如何,电子吸收光子并积累了能量后,总能逸出成为光电子答案:A7、如图所示,电路中所有元件完好,但光照射到光电管上,灵敏电流计中没有电流通过,其原因可能是 ( )A .入射光太弱B .入射光波长太长C .光照时间短D .电源正负极接反答案:BD8、用波长为2.0×10-7m 的紫外线照射钨的表面释放出来的光电子中最大的动能是 4.7×10-19J .由此可知,钨的极限频率是(普朗克常量h =6.63×10-34 J·s ,光速c =3.0×108 m/s ,结果取两位有效数字) ( )A .5.5×1014HzB .7.9×1014HzC .9.8×1014HzD .1.2×1015Hz答案:B9、已知能使某金属产生光电效应的极限频率为ν0,则( )A .当用频率为2ν0的单色光照射该金属时,一定能产生光电子B .当用频率为2ν0的单色光照射该金属时,所产生的光电子的最大初动能为hν0C .当照射光的频率ν大于ν0时,若ν增大,则逸出功增大D .当照射光的频率ν大于ν0时,若ν增大一倍,则光电子的最大初动能也增大一倍 答案:AB10、如图所示,当电键K 断开时,用光子能量为2.5 eV 的一束光照射阴极P ,发现电流表读数不为零。

相关主题