第六章红外吸收光谱案例
11
可见,影响基本振动频率 (即基频峰位置 )的直接原因是原 子质量和化学键力常数。
表15-1 某些化学键的力常数
化 学 键 键 长(A) k(N· cm-1)
C-C C=C 1.54 4.5 1.34 9.6
C≡C C-H O-H N-H C=O 1.20 15.6 1.09 5.1 0.96 7.7 1.00 6.4 1.22 12.1
active) ;反之则为红外非活性(infrared inactive)。
9
二、 分子振动方程式
10
双原子分子可以看成是谐振子,根据经典力 学(胡克定律),可导出如下公式:
1 v 2 k
k
m1 m2 m1 m2
1303 k
v
1 2 c
-1) ; k为力常 ν 为振动频率(Hz), 用波数表示 (cm v 数,表示每单位位移的弹簧恢复力 (dyncm-1) ; μ 为折合质量(g)。
(十一)图谱的解析
(1)不饱和度的计算:
1 U 1 n4 (n3 n1 ) 2
式中 n1 、n3和n4分别为分子中一价、三价和四价原 子的数目,不饱和度为键数和环数之和。
(2) 识别基团频率区和指纹区——先简单后复杂,先基
团频率区后指纹区,先强峰后弱峰,先初查后细查,先否 定后肯定。
21
6-3 基团频率与分子结构的关系
同一类型的化学键的振动频率是非常接近的, 总是出现在某一范围内。这种与一定的结构单元
相联系的振动频率称为基团频率。但它们又有差
别,因为同一类型的基团在不同的物质中所处的 环境各不相同,而这种差别又能反映出结构上的 特点。
22
一、基团频率区与指纹区
1.基团频率区( 4000~1300cm-1)
利用以上原理,可以计算化学键的伸缩振动频率。 1dyn=10-5N
12
例1 求C=O健的伸缩振动频率。 解:
1 1216 23 1 . 14 10 23 12 16 6 . 02 10
v 1 2 c 12.1105 1 1303 1727 cm 1.14 1023 k
伸缩振动
反对称伸缩振动
振动 形式
高频区
低频区
剪式振动 面内变 形振动 面内摇摆振动 面外摇摆振动
变形或弯 曲振动
化学键角发生周期性变 化的振动
面外变 形振动 扭曲变形振动
18
19
分子振动形式与红外吸收
实际观察到的红外吸收峰的数目,往往少于振动形 式的数目,减少的原因主要有:
(1) 不产生偶极矩变化的振动
实验中观察到的C=O伸缩振动频率都在1700cm-1附近。 值得注意的是:在弹簧和小球的体系中,其能量变化是 连续的,而真实分子的振动能量变化是量子化的。
13
三、 分子振动的形式
(一)分子的振动自由度
每个原子在空间的位置必须有三个坐标来确定,则由 N个原子组成的分子就有了3N个坐标,或称为有3N个运
1、 2、 3、
νC H
_
3000~2800cm-1
δC
__
-1 1475 ~ 1300cm H (面内)
δC
__
H (面外)740~720cm
-1
(CH2)n当 n≥4时: 在740~720cm-1会产生吸收峰。
26
正辛烷的红外光谱图
27
异丙基和叔丁基 在1375cm-1处的 裂分情况:
28
(二) 烯烃
顺,反-2-辛烯的红外光谱
31
3.炔
≡C - H 伸 缩振动3300
烃
C≡C伸缩振动 末端炔键2140-2100 中间炔键2260-2190 ≡C-H弯曲振动 642-615
32
33
例1:化合物的分子式为C8H14,IR光谱图如下如下,试推断其 可能的分子结构结构。 U=1+8+(0-14)/2=2
方法等 • 内部因素:电子效应(诱导、共扼效应)、氢键 的影响、振动耦合等
56
样品的状态
气态下测得的谱带波数最高,并能观察到伴随振动光谱的转
动精细结构;在液态和固态下测定的谱带波数相对较低。
丙酮在气态时C=O=1742cm-1 液态时C=O=1718cm-1
返回
57
温度效应
低温下,吸收带尖锐,随温度升高,带宽增加,带数减小
3
应用最广泛为中红外光谱。
4
红外区的光谱除了用波长表征外,更常用波数(wave number ) 表征。波数是波长的倒数,表示每厘米长光波
总波的数目。若波长以m为单位,波数的单位为cm-1,则
波长与波数的关系为:
1 10 / cm / cm / m
1
4
所有的标准红外线光谱图中都标有波数和波长两种刻度。
1.
ν= C-H
3100
2. νC= C
1680-1620
3. δ =C -H (面外)
990和910两个峰
890
970
29
1—辛烯的红外光谱图
4
1
2
3
1. =CH的伸缩振动 3. -C =CH的面外弯曲
2. C =C的伸缩振动 4. 915cm-1的倍频峰
H H 碳氢键的面外弯曲1000cm-1、9来自5cm-1证明是末端烯烃 30
+
O C O
O
C
O
_ C
(2) 简并
+
O
O
(3) 振动吸收的能量太小
20
(三)红外光谱的吸收强度
分子振动时偶极矩的变化,不仅决定分子能否吸收红外
线光,而且还关系到吸收峰的强度。根据量子理论,红外光
谱的强度与分子振动时偶极矩变化的平方成正比。红外光谱 的吸收强度通常定性地用vs(很强),s(强),m(中 等),w(弱),vw(极弱)等来表示。
第六章
红外吸收光谱分析
Infrared Absorption Spectrometry, IR
6-1 红外吸收光谱分析概述
当红外光照射时,物质 的分子将吸收红外辐射,引 起分子的振动和转动能级间 的跃迁所产生的分子吸收光
谱,称为红外吸收光谱或振
动-转动光谱。
1
分子结构基础 研究 两方面 的应用
测定分子的键长、键角, 以此推断分子的立体构 型
信息,确定苯环的取代基类型等。
24
第一峰区(3700~2500) X-H的伸缩振动吸收 第二峰区(2500~1900)叁 键、累积双键伸缩振动吸收
第四峰区(1500~600)
第三峰区(1900~1300)
表15.7为部分重要官能团的红外吸收带的位置25
二、典型有机化合物的红外光谱主要特征
(一) 烷烃
52
例2 :
CH C CH 2OH
53
例3:某化合物其红外光谱图如下,试推测该化合物是:
ClCH2CCH2CH3 还是 HO O
Cl
?为什么
54
例4:下图为乙酸烯丙酯(CH2=CH-CH2-O-CO-CH3)的R谱, 指出标有波
数的吸收峰的归属。
55
三、影响基团频率位移的因素
• 外部因素:浓度、温度、溶剂、试样状态、制样
58
氢键的影响
O R
C
O
H
O O
C
OH
1760
R
C
O
H
R
1700
氢键的形成使电子云密度平均化,C=O双键性减少, 键力常数减小,C=O伸缩振动频率下降。
59
分子间氢键受浓度影
响较大,因此可观测
稀释过程峰位置的变 化,来判断分子间氢 键的形成。 分子内氢键不受浓度 影响。
60
电子效应
(1)诱导效应:指电负性不同的取代基,会通过静电诱导而引 起分子中电子分布的变化,从而改变了键力常数,使基
100 90 80 70 60
T%
末端炔≡C-H 40 伸缩振动 -1 3300cm 30
20 10 0 4000
50
C≡C 伸缩振动 2100cm-1 -CH2面外变形 -CH3 面外变形 振动 振动 1470cm-1 1370cm-1
3200
CH2
n
n≥4 720cm-1
3600
饱和与不饱和 cm-1 CH伸缩振动
2.
νC-O
1300 – 1100cm-1
41
O-H伸缩振动3300附 近,吸收带强而宽。
C-O伸缩振动1260-1000 强度大,伯醇1050 、仲醇 1100、叔醇1150 酚1200 ,且强而宽
O-H 弯 曲 振 动1350。
42
(六)醚
醚的特征吸收带就是 C—O—C伸缩振动 芳基烷基醚 饱和脂肪醚1125(强) 附近 1280 - 1220 及 1100 - 1050 若α 碳上带有侧链,在1170 两个强吸收带,前者强度 -1070 区出现双带。 更大。
N-H伸缩 振动3400
胺类
C-N伸缩振动 脂肪胺类1230-1030m 芳香胺类1360-1250s 1280-1180m
50
(十)酰胺
N-H伸缩振动 酰胺3300左右
N-H面内弯曲振动 又称:酰胺II带 伯酰胺1600-1640 仲酰胺1600以下
C=O伸缩振 动:酰胺I带
N-H面外弯曲振动 伯酰胺875-750 51 仲酰胺750-650
某些化学基团的吸收频率总是出现在一 个较窄的范围内。这类频率称为基团特征振 动频率,简称基团频率。( 位置、强度、峰形 ) 它们可用作鉴别官能团的依据。
例如,羰基总是在1870~1650cm-1间,出现强吸收峰.
23