当前位置:文档之家› 飞行管理_数学建模

飞行管理_数学建模

B 题:飞行管理问题摘要:飞行管理问题是一个既现实又重要的课题,本文利用偏转角度尽可能的小建立两个非线性规划模型。

模型一:时间模型。

考虑到各架飞机的偏转角有正有负,在此模型中,对于各架飞机调整选取各个偏转角的绝对值的和作为目标函数,要求任意两架飞机任意时刻的距离大于8公里,则可以求出任意两架飞机的距离ij d 。

此时,两架飞机距离ij d 是时间t 与各个飞机偏转角i θ∆的函数,编写程序时将t 离散化,且t 有最大值0.2828s (沿对角线飞过的时间),这样可得到表1-1的结果:表1-1模型二:闭塞区域模型。

在两架飞机中,将其中一架看成“静止”,另一架相对于它而运动。

而以“静止”飞机为圆心,km 8为半径的圆形区域构成该飞机的闭塞区域,任意一架飞机的方向角均不能在此区域内,则为不相撞。

为此,本文用复变函数的知识表示各架飞机的速度,从而算出相对速度,再求出相对位移,以相对速度与相对位移的夹角大于每两架飞机的临界夹角来刻画不相撞。

目标函数为每架飞机偏转角的平方和。

利用计算机编程得到表1-2的结果:表1-2对于上述两个非线性规划,在理论方面,本文利用SUTM 内点法(障碍函数法)进行算法描述,在操作方面,分别利用lingo 语言与MATLAB 语言直接编写程序进行计算关键词:非线性规划、复变函数、SUMT 内点法、闭塞区域、禁飞角一、问题重述1.背景知识与其他交通工具相比,飞机以其速度快、安全舒适等特点在交通领域占据了绝对地位。

而近年来飞机事故的频繁发生也预示着飞机存在一定的安全隐患。

经调查造成飞机相撞事故的原因主要是人、飞机(设备)、环境,而人的因素是事故中通常起主体作用的因素,直接影响事故的发生和结局。

飞机事故的发生难以预测且死亡率极高,所以航空安全机制的健全,航空人员素质的提高已变得刻不容缓。

2.问题重述在约10000米的高空某边长为160公里的正方形区域内,经常有若干架飞机作水平飞行。

区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。

当一驾欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。

如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。

现假定条件如下:1)不碰撞的标准为任意两架飞机的距离大于8公里;2)飞机飞行方向角调整的幅度不应超过30度;3)所有飞机飞行速度均为每小时800公里;4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以上;5)最多需考虑6架飞机;6)不必考虑飞机离开此区域后的状况。

请你对这个避免碰撞的飞机管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度),要求飞机飞行方向角调整的幅度尽量小。

设该区域内4个顶点的坐标为(0,0),(160,0),(160,160),(0,160)。

记录数据为:二、 基本假设1.飞机在规定区域内飞行,不会发生任何自然灾害;2.飞行人员能够探知飞行区域内所有飞机的飞行轨迹,并能够及时作出相应调整;3.飞机在规定区域内最多只调整一次,且在第六架飞机刚进入区域时调整;4.飞机在调整过程中是瞬间完成,飞行轨迹可看成直线;5.不碰撞的标准是任何两架飞机的距离大于km 8;6.飞机飞行方向的调整幅度不应超过︒30; 7.所有飞机调整角度总和最小为最优方案; 8.暂时不考虑飞机离开此区域的情况; 9.飞机在调整之后按固定速度飞行; 10.飞机在飞行过程中可看为质点。

三、 参数说明1.()i i y x ,表示第i 架飞机的初始位置;2.i θ表示第i 架飞机初始飞行角度;3.i θ∆表示第i 架飞机的调整角度;4.ij s 表示第i 架飞机和第j 架飞机的距离; 5.ij d 表示第i 架飞机和第j 架飞机距离的平方;5.i v 表示第i 架飞机的飞行速度;6.t 表示飞机的飞行时间;7.i t 表示第i 架飞机飞出飞行区域的时间; 10.;架飞机的飞行角度架飞机相对于第表示第i j ij θ 11.架飞机的速度矢量;表示第k Z k12.飞机的飞行矢量架飞机指向第表示第j k f kj ; 13.架飞机的禁飞角的大小架飞机对第表示第j k kj α。

四、 问题分析图4-1:飞机初始状态从距离约束条件来说,在初始状态下,我们可以通过调整飞行方向,目的使飞机在飞行区域内满足任意两架飞机的距离都大于8公里。

调整角度我们可以假设已知,将上述初始角替换成调整角,通过计算,我们知道存在调整方法能够使飞机安全飞出飞行区域,且调整方式多样。

若我们假设调整角度对于每架飞机来说,其满意度是一样的,那在这一系列调整方式中,必定存在调整角度之和达到最小的调整方式。

在飞行过程中,初始位置和飞行方向对飞机的飞行路径有决定性作用,而在速度已知的情况下,时间的确定就可以直接决定飞机的具体位置。

由此,我们想到,如果取适当的一段时间为步长,确定检测时间点,若这些时间点各架飞机都能满足不相撞的条件,那我们可以近似认为,飞机在这些飞行方向上是符合安全飞行条件的,之后只需找出调整最小的方式即可。

从角度约束条件来说,将飞机看做质点,在飞行区域内,以飞机为圆心,4公里为半径的圆形区域内是不能存在其他飞机的。

即每架飞机都有其自身的闭塞区域,而且是动态的闭塞区域。

在边长为160公里的正方形二维平面内,这6个闭塞区域在运动过程中是不允许存在重合部分的。

飞机在飞行区域内是按照同一方向飞行,也就是说在该正方形区域内,闭塞区域是按直线行走的。

运动初期,各圆的位置已知,飞行方向可调整(先不考虑调整角度的限制问题),而调整的目的是为了让这些圆在以相同速度且沿直线的行走过程中不存在重合部分。

将模型简化,仅看两架飞机的运动形式,以一个圆的圆心出发,引发出两条相对于另一个圆的切线,而这两条切线在包含另一个圆的一侧所构成的夹域是禁飞域,夹角为禁飞角。

在这种解法中不仅要考虑飞机之间的相对运动速度还要考虑飞机之间初始相对位置的具体关系。

讨论初期,我们确定飞机之间相对运动的速度还是引用原有的坐标系,飞机之间相对位置关系也在原有的坐标系中讨论,该模型的约束条件就是相对运动方向与相对位置方向之间的相对夹角只要满足不在禁飞夹角中即可。

首先我们选择通过几何方法计算相对夹角,而在进一步计算过程中,我们发现相对夹角若以角度制表示要分不同种情况讨论,过程复杂难以计算。

之后我们又将模型进一步改进,对于坐标系的选取,若以飞机之间相对位置所在向量确定相对坐标则使约束条件简化。

在计算方面,为了避免角度的多情况影响,我们选取以复数形式表示角度,这样就将相对夹角的形式统一起来,计算也有了进一步突破。

在计算出具体结果后,就需要对结果的有效性进行检验,而我们选取的检验条件就是飞机以调整后的角度飞行,在离开飞行区域时,是否与飞行区域内的其他飞机的距离大于60公里,若都满足大于60公里,则认为结果可行性较强,若有出入,在对模型进行相应调整。

五、模型建立与求解模型一设飞机初始状态下的坐标为),(i i y x 易知任意时刻飞机的坐标为)cos(i i i i vt x X θθ∆++= )sin(i i i i vt y Y θθ∆++=则两架飞机的距离:222)()(j i j i ij ij Y Y X X s d -+-==讨论飞机在规定区域内的飞行状态,则飞机有飞行时间的限制:若飞机沿对角线飞行,则飞行距离最远,飞行时间最长,此时8002160max =t ,即()2828.0,0∈t ,在飞行时间内,如果任意两架飞机的距离都超过8公里,则认为不会发生碰撞事件,即:()2828.0,0∈∀t )61,61(64==>j i d ij (1)首先讨论如果不改变飞机偏转角是否有两架飞机相撞,即满足(1)式的j i 和 当小时公里/800=v ,()i i y x ,和i θ已知的情况下,经计算:()()6452sin 5.220sin 80015552cos 5.220cos 80015022236<=-++-+=︒︒︒︒t t s 和()()6452sin 230sin 80015052cos 230cos 80013022256<=-++-+=︒︒︒︒t t s在()2828.0,0∈t 内有实解,则如果按照初始方向飞行会发生碰撞事件,需要做出相应调整。

为了确保飞行时不会发生碰撞事件,则任意两架飞机的飞行距离不得小于公里8,在此条件下寻求6架飞机能够安全通过飞行区域的最小调整方式。

而对于“最小的调整方式”,本文采取下述两种理解方式。

1.偏转总和最小。

因为每架飞机偏转角可正可负,所以,本模型取偏转角的平方和作为目标函数。

结合上述分析与条件,可建立如下非线性规划模型∑=∆612)(mini i θ ..t s ()⎪⎩⎪⎨⎧∈=<∆==>2828.0,0)61(30)61,61(64t i j i d i ij θ 其中:222)()(j i j i ij ij Y Y X X s d -+-== 2.每架飞机偏转都最小。

T =min..t s ⎪⎪⎩⎪⎪⎨⎧∈<∆<∆==>)2828.0,0(30)61,61(64t Tj i d i i ij θθ编程时,我们将t 离散化,分为200等分,即00094.03002828.0==dt误差km vdt ds 7541.0== (1)求得的最终结果为:01=∆θ;02=∆θ;︒=∆540629.23θ;04=∆θ;05=∆θ;︒=∆074526.16θ。

(2)求得的最终结果为:︒=∆2906.21θ;︒=∆2500.02θ;︒=∆5406.23θ;04=∆θ;︒=∆2500.05θ;0745.16=∆θ对比上述结果,结合题中误差在︒01.0之内,可只取第一种方案,这样既满足飞机偏转总和最小,又满足每架飞机偏转最小。

下面检验对于上述结果是否满足“进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以上;”飞机的飞行路径方程为:()()()i i i i x x y y θθ∆+=--tan /;求得每架飞机飞出飞行区域的坐标分别为()0,6190.129;()0,6668.27;()1227.15,0;()6603.105,0;()0,1351.4;()160,1314.120飞机飞出飞行区域的时间为:()()vy y x x t i i i i i 2121-+-=求得每架飞机的飞行时间为:0561.01=t ;1282.02=t ;2564.03=t ; 1941.04=t ;2448.05=t ;2501.06=t 。

飞机飞出飞行区域的先后顺序为:1,2,4,5,6,3。

相关主题