当前位置:文档之家› 作业讲评-7

作业讲评-7


第十一次 中文
4-24 按照粘附摩擦的机理,说明为什么极性高 聚物与金属材料表面间的摩擦系数较大,而非 极性高聚物则较小。 摩擦系数:=S/Pm S为剪切强度;Pm为抗压强度,极性聚合物作 用力大,S大。
T
9.17 Some aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 35 MPa.m1/2. It has been determined that fracture results at a stress of 250 MPa when the maximum (or critical) internal crack length is 2.0 mm. For this same component and alloy, will fracture occur at a stress level of 325 Mpa when the maximum internal crack length is 1.0 mm? Why or why not?
=(57.0-0)MPa/(0.001-0)=57.0GPa © 117.4MPa (d) 369.4MPa (e) %EL=[(l f - l 0)/ l 0 ]*100=[(59.182 – 50.8)/50.8 ]*100
=16.5
(f) U r =1/2 *y*y=0.5*117.4*106*0.002J/m3 =117400 J/m3

σmax=σ0[1+2(a/ρ)0.5]
= 2σ f(a/ρ )0.5
7000=60[1+2(a/0.14)0.5]
a=468nm,2a=936.5nm 括号中1省略则a=476nm

4-21某钢材的屈服强度为1100MPa,抗拉强度为1200MPa, 断裂韧性(KIC )为90MPa· 1/2 。(a)在一钢板上有 m 2mm的边裂,在他产生屈服之前是否会先断裂?(b) 在屈服发生之前,不产生断裂的可容许断裂缝的最大深 度是多少?(假设几何因子Y等于1.1,试样的拉应力与 边裂纹垂直) σ = KIC/Y(π a)0.5 =1032Mpa,先断裂
400 350 300
Stress (MPa)
250 200 150 100 50 0 0 0.05 0.1 Strain 0.15 0.2
(a) A0=d02/4 =3.14*12.82 mm2/4
= 128.6mm2
=F/A0 = l /l0 , l0 =50.8mm
(b) E=slope=/=(2-1)/(2-1)
9.6 Briefly explain (a) why there may be significant scatter in the fracture strength for some given ceramic material, and (b) why fracture strength increases with decreasing specimen size.
9.32 A 12.5mm diameter cylindrical rod fabricated from a 2014-T6 alloy (Figure 9.46) is subjected to a repeated tension-compression load cycling along its axis. Compute the maximum and minimum loads that will be applied to yield a fatigue life of 1.0107cycles. Assume that the stress plotted on the vertical axis is stress amplitude, and data were taken for a mean stress of 50 MPa.
思考题
4-7 一条长212cm的铜线,直径为0.76mm。当外加载荷为8.7kg时 开始产生塑性变形(a)此作用力是多少牛顿?(b)外加载荷为 15.2kg时,此线的应变为0.011,则去除载荷后,铜线的长度为 多少? ©此铜线的屈服强度是多少? 解:(a)F1=mg=8.7*9.8=85.3N (b)σ =F2 /S= F2 /(π d2/4) =15.2*9.8 /(π * 0.762/4)=329(MPa) ε =σ /E=329MPa/110.3Gpa=3‰ L=L0(1+Δ ε )=212*(1+0.011-0.003)=213.7cm (3)σ = F1 /S= 85.3N / (π * 0.762/4) =187.9Mpa
At a fatigue life of 1.0×107 cycles, the stress amplitude a is about 175(160)MPa. a =(max - min )/2, 英文书P257 m =(max + min )/2, 英文书P258 So max = m +a , min =m - a , F max /A= m +a F max =(m +a )A=27598N (25758) F min =(m -a )A=-15332N (-13492)
4-9 从拉伸试验如何获得常用的力学性能数据?
拉伸强度、屈服强度、断裂强度、断裂伸长 率、弹性模量等,公式可计算。
4-13 有哪些方法可以改善材料的韧性,试举例 说明。 晶粒细化(晶格类型);成分,高分子共混橡 胶,金属种杂质;热处理;高分子中的银纹。
4-19某钢板的屈服强度为690MPa,KIC值为 70MPa· 1/2,如果可容许最大裂缝是2.5mm, m 且不许发生塑性变形,则此钢的设计极性强度 是多少? KIC=c (a)1/2, c = KIC (a)-1/2 =70Mpa.m1/2 (3.14*1.25mm)-1/2 =1117MPa
FCC 韧性,甚至在低温。P254 跟裂纹有关。Cracks in ductile materials are said to be stable;For brittle fracture, cracks are unstable, and the fracture surface is relatively flat and perpendicular to the direction of the applied tensile load.
陶瓷材料的结构,晶相、玻璃相和气相;裂 纹等缺陷。
9.28 Briefly explain why BCC and HCP metal alloys may experience a ductile-to-brittle transition with decreasing temperature, whereas FCC alloys do not experience such a transition.
a=(KIC/Yσ )2/π 1100 1200 =1.5mm 1.76 1.5



7.29 A cylindrical specimen of aluminum having a diameter of 12.8 mm and a gauge length of 50.800 mm is pulled in tension. Use the load–elongation characteristics tabulated below to complete problems a through f. (a) Plot the data as engineering stress versus engineering strain. (b) Compute the modulus of elasticity. (c) Determine the yield strength at a strain offset of 0.002. (d) Determine the tensile strength of this alloy. (e) What is the approximate ductility, in percent elongation? (f ) Compute the modulus of resilience.
9.18 Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane strain fracture toughness of 40 Mpa m1/2 . It has been determined that fracture results at a stress of 365 MPa when the maximum internal crack length is 2.5 mm. For this same component and alloy, compute the stress level at which fracture will occur for a critical internal crack length of 4.0 mm . KIC=Y(a)1/2, Y= KIC /[(a)1/2]=(40 Mpa m 1/2 ) / [(365Mpa)(3.14*0.0025/2m)1/2]=1.75 另外受力: = KIC /[(a)1/2 Y]=(40 Mpa m 1/2 )/ [(3.14*0.004/2m)1/2 1.75]=288.4MPa,
7.40 For some metal alloy, a true stress of 415 MPa produces a plastic true strain of 0.475. How much will a specimen of this material elongate when a true stress of 325 MPa is applied if the original length is 300 mm ? Assume a value of 0.25 for the strain-hardening exponent n. T =K Tn , K= T / Tn =415MPa/(0.4750.25)=500MPa T =( T/K)1/n=(325MPa/500MPa) 1/0.25=0.179 T =ln(l i / l 0), l i = l 0 * e =300mm*e0.179=300mm*1.196=358.8mm
相关主题