当前位置:文档之家› 微波实验报告波导波长测量

微波实验报告波导波长测量

篇一:电磁场与微波实验报告波导波长的测量电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二波导波长的测量一、实验内容波导波长的测量【方法一】两点法实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。

当矩形波导(单模传输te10模)终端(z=0)短路时,将形成驻波状态。

波导内部电场强度(参见图三之坐标系)表达式为:e =ey =e0 sin(?xa) sin?z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。

将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。

yz两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。

调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值t1和t2),就可求得波导波长为:?g = 2 tmin-tmin由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。

记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:1tmin = ? t1 ? t2 ?2最后可得?g = 2 tmin- tmin (参见图四)【方法二】间接法矩形波导中的h10波,自由波长λ0和波导波长?g满足公式:?g =???? 1 ? ? ??2a?2其中:?g=3?108/f,a=2.286cm通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式cλ0=确定出λ0,再计算出波导波长?g。

校准晶体二极管检波器的检波特性由于微波晶体检波二极管的非线性, 在不同信号幅度时具有不同的检波律。

在一般测量精度要求的场合, 可认为在小信号时为平方律检波,大信号时为直线律检波, 或在系统信号幅度范围内做平均检波律定标。

晶体检波二极管的定标准确与否, 直接影响微波相关参数的测量精度。

微波频率很高, 通常用检波晶体(微波晶体二极管)将微波信号转换成直流信号检测出来。

微波晶体二极管是一种非线性元件, 检波电流i 同微波场强e 之间不是线性关系,在一定范围内, 两者关系为:晶体检波二极管的检波电流随其微波电场而变化, 当微波场强较大时近似为线性检波律, 当微波场强较小时近似为平方检波律。

因此, 当微波功率变化较大时a 和k 就不是常数, 且和外界条件有关, 所以在精密测量中必须对晶体检波器进行定标。

本实验中采用两种定标方法第一种定标方法检波电压u 与探针的耦合电场成正比。

晶体管的检波律n 随检波电压u 改变。

在弱信号工作(检波电流不大于10 μa)情况下,近似为平方律检波,即n=2;在大信号范围,n 近似等于1,即直线律。

测量晶体检波器校准曲线最简便的方法是将测量线输出端短路,此时测量线上载纯驻波,其相对电压按正弦律分布,即:uumax?2?d?sin????g????式中,d 为离波节点的距离,umax为波腹点电压,λg 为传输线上波长。

因此,传输线上晶体检波电流的表达式为?i?c?sin???2?d????g????????n根据上式就可以用实验的方法得到图所示的晶体检波器的校准曲线。

将上两式联立, 并取对数得到:作出曲线, 若呈现为近似一条直线, 则直线的斜率即是微波晶体检波器的检波律。

第二种定标方法测量线终端短路,测出半峰值读数间的距离w,晶体检波率可以根据下式计算:??=log0.5logcos(g二、实验步骤(1)、按照图示连接好测量系统(2)、利用两点法测量,将波导测量线终端短路,调测量放大器的衰减量和可变衰减器使当探针位于波腹时,放大器指示电表接近满格,用公式两点法测量波导波长(3)、利用间接法测量波导波长。

(4)、将探针沿测量线由左向右移动,按测量放大器指示每改变最大值刻度的10%,记录一次探针位置,给出u沿线分布的图形(5)、设计表格,用驻波测量线校准晶体的检波特性三、实验结果分析(1)、作出测量线探针在不同位置下的读数分布曲线篇二:微波实验二波导波长北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:组员:撰写人:学号:序号:实验二波导波长的测量一、实验内容波导波长的测量【方法一】两点法实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片,在测量线中入射波与反射波的叠加为接近纯驻波图形,只要测得驻波相邻节点得位置l1、l2,由公式即可求得波导波长????。

两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。

调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值t1和t2),就可求得波导波长为:?g = 2 tmin-tmin由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。

记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:1tmin = ? t1 ? t2 ?2? = 2 t tmin (参见图4)最后可得gmin-【方法二】间接法矩形波导中的h10波,自由波长λ0和波导波长?g满足公式:?g =???? 1 ? ? ??2a?2其中:?g=3?108/f,a=2.286cm通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式cλ0=确定出λ0,再计算出波导波长?g,利用波长表进行波导波长测量要注意,测量信号波长完成后要将波长计从谐振点调开,以免信号衰减后影响后面的测量。

二、实验步骤(1)观察衰减器、空腔波长计、驻波测量线的结构形式、读数方法。

(2)按图一检查系统的连接装置及连接电缆和电缆头。

(3)开启信号源,预热仪器,并按操作规程调整信号工作频率及幅度,并调整调制频率。

注意:输出信号功率不能过大,以免信号过大烧坏检测器件及仪器,开启选频放大器电源,预热按说明书操作。

注意:分贝开关尽量不要放在60db位置,以免工作时因信号过大损坏表头。

(4)利用两点法进行测量,将波导测量线终端短路(同轴测量线终端开路),调测量放大器的衰减量和可变衰减器使探针位于波腹时,放大器指示电表接近满格,用公式1a,1b两点法测量波导波长。

(5)将驻波测量线探针插入适当深度(约1.0mm),将探针转移至两个波节点的中点位置,然后调节其调谐回路,使测量放大器指示最大。

(6)利用间接法来测量波导波长λg,首先,用波长计测量信号波长。

测三次取平均值,再按照公式二计算λg,测量完成后要将波长计从谐振点调开,以免信号衰减影响后面的测量。

校准晶体二极管检波器的检波特性(7)将探针沿测量线由左向右移动,按测量放大器指示每改变最大值刻度的10%,记录一次探针位置,给出u 沿线的分布图形。

(8)设计表格,用驻波测量线校准晶体的检波特性。

(9)作出晶体检波器校准曲线图。

令d作为测量点与波节点的距离;do是波节点的实际位置,d0+d就是测量点的实际位置:(10)再移动探针到驻波的波腹点,记录数据,分别找到波腹点相邻两边指示电表读数为波腹点50%对应的值,记录此刻探针位置d1和d2,根据公式n=log0.5logcos()g求得晶体检波率n,和(8)所得的数值进行比较。

三、实验结果分析数据分析:由于此时波导中存在的是驻波,并且测量的位置是从波腹到相邻的波节,所以画出来的波形应该是正弦曲线的四分之一,由上图可以看出,实验结果基本符合,误差在允许范围内。

(2)、给出检波晶体的校准曲线,求出晶体检波率n。

上图为对数坐标,横轴表示loge,纵轴表示logu分析:根据理论分析,上图应该是一条斜率为n的直线,而实际描出的点连成的线不是一条很直的直线,笔者决定采用理论拟合法拟合出一条直线。

拟合后直线的斜率为1.92,所以晶体检波率为1.92。

第二种定标法??=log0.5logcos(λg=log0.5logcos=1.80(3)a.两点法测量波导波长1112.5+104.5=108.5 221124.5+136tmin =? t1 ? t2 ?==130.2522tmin = ? t1 ? t2 ?=?g = 2 tmin-tmin=43.50mmb.间接法测量波导波长?g =????1 ? ? ??2a?2=43.12mm比较两种方法测量出的波导波长,可以看出相差不大,说明实验结果比较准确,实验操作规范正确。

(4)做晶体检波特性的校准时,有哪些主要误差因素?怎样减少或避免?答:探针深入长度放在适当深度,当探针沿线移动时,应避免探针上下左右晃动。

(5)你所测的晶体校准曲线的应用条件是什么?答:晶体二极管是一种非线性元件,亦即检波电流i同场强e之间不是线性关篇三:北邮电磁场与电磁波测量实验报告5 信号源波导波长北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术; (3) 学习用微波作为观测手段来研究物理现象。

二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。

该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。

在教学方式下,可实时显示体效应管的工作电压和电流的关系。

仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。

2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。

相关主题