第五章 定积分内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。
要求:理解定积分的概念和性质。
掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。
重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。
难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。
§1.定积分的概念一、实例分析1.曲边梯形的面积设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形.如何定义曲边梯形的面积? (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高.(3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示:将曲边梯形分割为许多细长条, 分割得越细, 误差越小.y =f (x )x =a x =by =f (x )a=x 0 x 1 x i-1 x i x n =b第i 个细长条面积)],,[()(11---=∆∈∀∆≈∆i i i i i i i i i x x x x x x f S ξξ曲边梯形面积: ∑=∆≈ni iixf S 1)(ξ定积分概念示意图.ppt定义: ),,2,1,max {()(lim 1n i x xf S i ni ii=∆=∆=∑=→λξλ抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义设)(x f y =在[a , b ]有定义, 且有界.(1) 分割: 用分点b x x x a n =<<<= 10把[a , b ]分割成n 个小区间:},,2,1,max{,,,2,1],,[11n i x x x x ni x x i i i i i i =∆=-=∆=--λ记(2) 取点: 在每个小区间],[1i i x x -上任取一点i ,做乘积: i i x f ∆)(ξ.(3) 求和:∑=∆ni iixf 1)(ξ(4) 取极限: ∑=→∆ni iixf 1)(limξλ若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作:⎰badx x f )(. 即:∑⎰=→∆=ni i i bax f dx x f 1)(lim )(ξλ[a , b ]: 积分区间;a :积分下限;b :积分上限;∑=∆ni iixf 1)(ξ积分和式.问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量?注: (1)∑=∆ni i i x f 1)(ξ与区间的分割法x i 和取点法i 有关; 而⎰badx x f )(与x i 和i 无关.(2)⎰badx x f )(与a 、b 、f 有关,与x 无关,即:[][]⎰⎰⎰⎰===bab ab abad f du u f dt t f dx x f )()()()(2.定积分存在定理定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积.例1. 求⎰1xdx解: x x f =)(在[0, 1]连续, 积分存在.∑⎰=→∆=ni ii x xdx 11lim ξλ与[0, 1]的分割法和i 的取法无关. 选取特殊的分割法和取点法, 可使计算简便. (1) 将[0, 1]n 等分, nx n i x i i 1,=∆= (2) 取点i =2)(,nix f x i i i i =∆=ξξ(3) 求和2)1(1)(2121+==∆∑∑==n n n n i x f ni ni i i ξ(4) 取极限212)1(lim)(lim 2=+=∆∞→→n n n x f n i i ξλ故211=⎰xdx 3. 定积分的几何意义若)(x f 在[a , b ]上非负, 则⎰ba dx x f )(=曲边梯形面积; 若)(x f 在[a ,b ]⎰baS +S +S -⎰badx x f )(的几何意义是由曲线0,,),(====y b x a x x f y 围成曲边梯形面积的代数和.例2. a b dx xdx dx x ba-===-⎰⎰⎰-;0sin ;1212πππ.三、定积分的性质 1.规定⎰⎰⎰-==abbaaadxx f dx x f dx x f )()()2(0)()1(2.性质⎰⎰⎰⎰⎰⎰⎰⎰+=±=±=bcc ab abab ab ababadxx f x f dx x f dx x g dx x f dx x g x f dxx f k x kf )()()()3()()()]()([)2()()()1(⎰⎰⎰⎰⎰⎰⎰⎰+=-=⇒+=bccacacbbab acbcadxx f dx x f dx x f dx x f dx x f dxx f dx x f dx x f )()()()()()()()((4) 若在[a , b ]上有)(0)(b a x f <≥,则0)(≥⎰ba dx x f推论1 若)()()(b a x g x f <≥,则⎰⎰≥babadx x g dx x f )()(推论2⎰⎰≥babadx x f dx x f )()((5) 设M 、m 分别为)(x f 在[a , b ]上的最大、最小值)(b a <,则)()()(a b M dx x f a b m ba-≤≤-⎰(6) (积分中值定理) 设],[)(b a C x f ∈, 则),(b a ∈∃ξ, 使得))(()(a b f dx x f ba-=⎰ξab dx x f f ba-=⎰)()(ξ称为)(x f 在[a , b ]上的平均值.f (ξ)§2. 微积分基本公式一、变速直线运动中的位置函数与速度函数之间的关系(略)二、积分上限的函数及其导数设)(x f 在[a , b ]上连续, 则x [a , b ], 有)(x f 在[a , x ]上连续. 从而⎰xadx x f )(存在.在这里, 积分上限x 与被积变量x 的性质是不同的. ⎰badx x f )(与a 、b 、f 有关,与x 无关.⎰⎰=xaxadt t f dx x f )()(与a 、x 、f 有关.对于[a , b ]上的任一点x , ⎰xadt t f )(有一个确定的对应值, 故⎰xadt t f )(是x 的函数, 记作(x ), 即:)(,)()()(b x a dt t f dx x f x xax a≤≤==Φ⎰⎰称为积分上限的函数.定理 若)(x f 在[a , b ]上连续, 则积分上限的函数⎰=Φxadt t f x )()(在[a , b ]上可导, 且)()()(x f dt t f x xa ='⎪⎭⎫ ⎝⎛=Φ'⎰ 证明: ⎰∆+→∆=Φ-∆+Φ=∆∆∆='x x x x dt t f x x x y xyy )()()(,lim)()(lim )(lim )(lim)(000x f f xxf x dt t f x x x xx xx ==∆∆=∆=Φ'→∆→∆∆+→∆⎰ξξ积分中值定理.注: 若)(x f 在[a , b ]上不连续, 则最后一个等式不成立. 此定理说明, ⎰=Φxadt t f x )()(是)(x f 的一个原函数.例1. 202sin sin x dt t x='⎪⎭⎫ ⎝⎛⎰例2. ⎰=x t dt e x G 1)(, 求)(x G '例3. 求极限xdte x t x sin lim⎰→.三、牛顿—莱布尼茨公式定理 若)(x f 在[a , b ]上连续, )(x F 是)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰证明:)(x F 是)(x f 的一个原函数, ⎰=Φxadt t f x )()(也是)(x f 的一个原函数, 同一个函数的两个原函数之间相关一个常数, 于是有:)()()()(0)()()()()()()()(a F b F dx x f a F C C a F dx x f C b F dx x f Cx F dx x f C x F dt t f ba a ab a xaxa-=⇒⎪⎩⎪⎨⎧-=⇒=+=+=⇒+=⇒=-⎰⎰⎰⎰⎰[]bab abadxx f x F a F b F dx x f ⎰⎰==-=)()()()()(记作记作例1.⎰94dx x例2.⎰-2141)1(1dx x x[]3)124(2arcsin 212)1(1214121412141πππ=-==-=-⎰⎰xxx d dx x x例3.⎰--121dx x[]2ln ln 11212-==----⎰x dx x 例4.⎰-322dx x[][]942)(223020223232+=+-=+-=---⎰⎰⎰x x xdx dx x dx x例5.{}⎰22,max dx x x{}3821,max 221022+=+=⎰⎰⎰dx x xdx dx x x 例6.⎰-π3sin sin dx x x()()34sin 32sin 32)cos (sin cos sin cos sin sin sin 22320232203=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-+⋅==-⎰⎰⎰⎰ππππππππx x dx x x xdx x dxx x dx x x注:在数学计算过程中, 要对结论(答案)作合理性检验.§3. 定积分的换元法和分部积分法一、定积分的换元法定理 若)(],,[)(t x b a C x f ϕ=∈满足如下条件:(1) )(t ϕ是[α,β](或[β,α])上单值单调函数; (2) )(t ϕ在[α,β](或[β,α])有连续导数; (3) b a ==)(,)(βϕαϕ 则:⎰⎰'=βαϕϕdt t t f dx x f ba)()]([)(.例1.dx x x ⎰++4122令21,122-==+t x t x . 当x =0时, t =1; 当x =4时, t =3.3223321232211223133123124=+⋅=+=⋅+-=++⎰⎰⎰t dt t tdt t t dx x x (若不定积分掌握得很好得话, 可以直接凑微分:4040412132122112221)12(21122⎥⎦⎤⎢⎣⎡+++=++-+=++⎰⎰⎰⎰dx x dx x dx x x dx x x ) 与不定积分换元法相比较, 有两点不同:(1) 积分变量由x 变为t 时, 积分的上下限也要随之改变; (2) 求出关于t 的原函数后无须回代成x 的函数. 例2.dx x x ⎰---2221112)1(tan sec sec 11433243321cos sec 222πππππ-=-==-⎰⎰⎰==--dt dt t t t dxx x x t tx注:换元积分公式,满足)(t ϕ所要求的条件很重要,如:I dt tdt t t dx x I t x -=+-=-⋅+=+=⎰⎰⎰--=-1111222111211)1(11111而事实上,[]2arctan 11π==-x I ,其原因在于)(t ϕ在t=0不可导.例3. 证明: (1) 若)(x f 是[-a , a ]上的偶函数, 则⎰⎰=-aaadx x f dx x f 0)(2)((2) 若证明)(x f 是[-a , a ]上的奇函数, 则0)(=⎰-aadx x f证明:⎰⎰⎰+=--aaaadx x f dx x f dx x f 00)()()(⎰⎰⎰⎰⎰⎰⎰⎰+-=+-=-=-=--=--=-aaa aaaa atx a dtx f x f dx x f dx x f dx x f dxx f dt t f t d t f dx x f 0)]()([)()()()()()()()(此例提示我们, 在计算定积分时, 看到对称的积分限, 要保持敏感. 例⎰-=+115340)(cos x x x .例4. ]1,0[)(C x f ∈, 证明:⎰⎰⎰⎰==πππππ2020)(sin 2)(sin )2()(cos )(sin )1(dxx f dx x xf dx x f dx x f并计算⎰+π2cos 1sin dx xxx⎰⎰⎰⎰⎰⎰⎰⎰⎰=⇒-=--==-=-=-=ππππππππππππππ0202220)(sin )(sin 2)(sin )(sin )()(sin )()(sin )2()(cos )()(cos )(sin )1(dxx f dx x xf dt t tf dx x f t d t f t dx x xf dxx f t d t f dx x f tx t x[][]4)arctan(cos 2)arctan(cos 2cos cos 112cos 1sin 2cos 1sin 2020202ππππππππππ==-=+-=+=+⎰⎰⎰x x xd x dx x x dx xx x二、定积分的分部积分法⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u[]⎰⎰⎰'-=='bab ab ab adx u v uv udv dx v u定积分的分部积分法适用的函数类型与不定积分的分部积分法相同. 例1. ⎰--12dx xe x例2.12ln 23ln 3ln 32--=⎰dx例3. )(cos 20N n xdx I n n ∈=⎰π[]()⎪⎪⎩⎪⎪⎨⎧⋅⋅-⋅--⋅⋅-⋅--=====⎪⎪⎩⎪⎪⎨⎧⋅-⋅--⋅-⋅--=--⋅-=-=-=⇒-=⇒--=--=--=-=-===⎰⎰⎰⎰⎰⎰⎰⎰-----------为奇数为偶数为奇数为偶数n n n n n n n n n n I xdx I dx x I n I n n n n n I n n n n I n n n n I n n I I nn I I n nI I I n dxx x n xdxx n xdx x n xxd x x x xd xdx I n n n n n n n n n n n n n n n n n nn 135)2(24)3)(1(224)2(13)3)(1(1cos 2cos 35)2(24)3)(1(24)2(13)3)(1(23111)1())(1(]cos [cos )1(cos )cos 1()1(cossin )1(cos sin sin cossin coscos 20120010422222022022202220120120120πππππππππππ积分公式:⎪⎪⎩⎪⎪⎨⎧⋅-⋅-==⎰⎰为奇数为偶数n n n n n n xdx xdx nn 1!!!)!1(2!!!)!1(cos sin 2020πππ例4.16322413cos 24πππ=⋅⋅⋅=⎰xdx§4. 反常积分(广义积分)定义定积分⎰badx x f )(需满足如下条件: (1) )(x f 有界 (2) )(x f 只有有限个间断点(3) a , b 为确定的数值, 即积分限是有限值. 反常积分是对无穷积分限和无界函数定义的积分.一、无穷限的反常积分定义 设),[)(∞+∈a C x f , 取t >a , 若极限⎰+∞→tat dx x f )(lim存在, 则称此极限为),[)(∞+a x f 在上的反常积分, 记作⎰+∞adx x f )(, 即:⎰⎰+∞→+∞=tat adx x f dx x f )(lim)(⎰+∞→tat dx x f )(lim存在, 也称为⎰+∞adx x f )(收敛;若⎰+∞→tat dx x f )(lim不存在, 则称⎰+∞adx x f )(发散.类似地, 定义:)),()(()()()(]),()(()(lim)(∞+-∞∈+=-∞∈=⎰⎰⎰⎰⎰∞+∞-∞+∞--∞→∞-C x f dx x f dx x f dx x f b C x f dx x f dx x f cc btt b注:都收敛收敛⎰⎰⎰+∞∞-+∞∞-⇔cc dx x f dx x f dx x f )(,)()([]∞+∞++∞→='∞+='⎰⎰⎰==-=-=aat x f x F ax f x F tadxx f x F a F t F dxx f a F t F dxx f )()()()(lim )()()()()()()()(记作记作例1. 2arctan 11002π==+∞+∞+⎰x dx x 例2.⎰∞-0dx xe x[][]1lim lim ][lim limlim-=---=-===-∞→-∞→-∞→-∞→-∞→∞-⎰⎰⎰⎰tt tt tx tx t t xt t x t x e e te dx e xexde dxxe dx xe例3.⎰∞+∞-+dx x x21)()1ln(21111102202022发散+∞=+=++++=+⎰⎰⎰⎰∞+∞+∞+∞-∞+∞-x dx x x dx x x dx x x dx x x故⎰∞+∞-+dx x x21发散.二、无界函数的反常积分定义 设∞=∈+→)(lim ],,()(x f b a C x f ax , 取b >t >a , 若极限⎰+→btat dx x f )(lim存在, 则称此极限为],()(b a x f 在上的反常积分, 仍记作⎰badx x f )(, 即:⎰⎰+→=btat badx x f dx x f )(lim )(亦称为⎰badx x f )(收敛; 否则,称⎰badx x f )(发散.类似地, 定义:⎰⎰⎰⎰⎰+=∞=-∞=+⋃∈=∞=-∈-→b ccabatabt b adxx f dx x f dx x f c f c f b c c a C x f dx x f dx x f b f b a C x f )()()(:)0()0(]},,)(),{[)()(lim )(:)0(),,[)(定义或若定义若注:都收敛收敛⎰⎰⎰⇔bccabadx x f dx x f dx x f )(,)()(例4.⎰-121dx xx11221lim 1lim 11lim0210211221=⎥⎦⎤⎢⎣⎡-⋅-=-=-∞=---→→→⎰⎰tt tt x x dx xxdx x x x x例5.⎰10ln xdx[]1ln lim ln lim ln 10101-=-==++→→⎰⎰tt tt x x x xdx xdx例6.⎰-22)1(1dx x发散111022121022022111lim )1(1)1(1)1(1)1(1)1(1lim⎥⎦⎤⎢⎣⎡-=--+-=-∞=--→→⎰⎰⎰⎰x dx x dx x dx x dx x x t x 故⎰-22)1(1dx x 发散. 注: 计算⎰badx x f )(前, 首先判断)(x f 在[a , b ]上是否有无穷点.定积分小结一、基本概念 1.定积分∑⎰=→∆=ni i i bax f dx x f 1)(lim )(ξλ2.变上限积分函数⎰=Φxadt t f x )()(3.广义积分 (1)无穷积分限 (2)无穷间断点 二、定积分的性质1.定积分与被积分字母无关[][]⎰⎰⎰⎰===bab ab abad f du u f dt t f dx x f )()()()(2.积分限的分割⎰⎰⎰+=bcc abadx x f x f dx x f )()()(3.积分中值定理设],[)(b a C x f ∈, 则),(b a ∈∃ξ, 使得))(()(a b f dx x f ba-=⎰ξ4.对称函数在对称区间上的积分⎪⎩⎪⎨⎧=⎰⎰-为偶函数为奇函数)()(2)(0)(0x f dx x f x f dx x f aaa三、定积分的计算 1.牛——莱公式 2.换元积分法 3.分部积分法 四、积分上限函数求导)()]([)()()()()(x u x u f dt t f x f dt t f x x u a xa '⋅='⎪⎭⎫ ⎝⎛='⎪⎭⎫ ⎝⎛=Φ'⎰⎰。