当前位置:文档之家› 谷氨酸发酵知识完全总结

谷氨酸发酵知识完全总结

谷氨酸的性质及基本介绍147.129261.538主要用途简介:(一)食品工业:谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。

(二)日用化妆品:谷氨酸作为营养药物可用于皮肤和毛发。

N—酰基谷氨酸钠系列产品是由谷氨酸缩合而成的性能优良的阴离子表面活性剂,广泛用于化妆品、香皂、牙膏、香波、泡沫浴液、洗洁净等产品中。

焦谷氨酸钠(味精脱水生成的产物)具有极强的吸湿性,能保持皮肤湿润,防止干燥,并增强皮肤和毛发的柔软和弹力。

日本己有以谷氨酸钠(或谷氨酸)为原料生产的高级人造革、化妆品和洗涤剂等产品。

(三)医药行业:谷氨酸作有较高的营养价值,医学上主要用于治疗肝性昏迷,还用于改善儿童智力发育。

(四)农业:谷氨酸与某些激素配合,可制成柑桔增甜剂;还可作为微肥的载体,在氮磷钾基本满足的条件下,作为叶面喷洒的微肥具有投入少、效益高等特点。

谷氨酸钠既是西红柿保护性杀菌剂,又是防治果树腐烂病的特效杀菌剂。

氨基酸铜是目前生产上良好的杀菌剂,有机铜比无机铜的应用效果好。

特殊说明:(一)谷氨酸晶体为白色结晶或结晶性粉末,味微酸。

(二)吸湿性温度50℃,其临界湿度在90%以上。

谷氨酸生产水平与市场分析生产水平:谷氨酸棒状杆菌-生物素敏感型高产菌株:采用生物素亚适量工艺,发酵32h,产酸达140g/L以上,糖酸转化率达62%以上,国内同类研究的领先水平。

谷氨酸棒状杆菌-谷氨酸温度敏感型突变株:在最佳发酵条件下,发酵24h,产酸达到160g/L,糖酸转化率达72%,国际同类研究的先进水平。

市场分析:我国味精工业的产量稳居世界第一位,2007年全国味精产量达190万吨。

味精工厂的味精平均销售价格为7,800元/吨,成本为7,000元/吨。

按照上述产量计算,我国味精工业中纯味精的总产值约150亿元,加上相当于上述总值30%的副产品(主要是饲料蛋白、化肥、液态肥料)的产出,我国味精工业年生产总值约为200亿元人民币。

从市场需求来看,2007年国内谷氨酸年产量约190万吨,国内人均消费味精仅1kg,与日本、香港、台湾、东南亚等国家及地区的味精消费水平(1.5kg)相比,还是较低的。

味精综合开发利用的效益显著,通过提高产酸率,吨味精成本可降低500元左右,其生产成本将低于日本的味精生产成本,具备了参与国际市场的竞争力,可以抓住机遇扩大味精出口量。

同时在国内可降低味精销售价格,刺激国内市场消费。

谷氨酸的代谢通路、关键酶、调控机制代谢途径:谷氨酸产生菌中谷氨酸的生物合成途径如图所示:其中的代谢途径包括糖酵解途径(EMP)、磷酸己糖途径(HMP)、三羧酸循环(TCA循环)、乙醛酸循环、伍德-沃克曼反应(CO2固定反应)等。

葡萄糖经过EMP(主要)和HMP途径生成丙酮酸,其中一部分氧化脱羧生成乙酰CoA进入TCA循环,另一部分固定CO2生成草酰乙酸或苹果酸,草酰乙酸与乙酰CoA在柠檬酸合成酶催化下,所合成柠檬酸,再经过氧化还原共扼的氨基化反应生成谷氨酸。

关键酶:α-酮戊二酸脱氢酶,谷氨酸脱氢酶调控机制:一.谷氨酸比天冬氨酸优先合成,谷氨酸合成过量后,谷氨酸的生物合成受其自身的反馈抑制和反阻遏,代谢转向合成天冬氨酸。

二.磷酸烯醇式丙酮酸羧化酶是催化CO2固定的关键酶,受谷氨酸的反馈抑制。

三.柠檬酸合成酶是三羧酸循环的关键酶,除受能荷调节外,还受谷氨酸的反馈阻遏。

四.谷氨酸脱氢酶受谷氨酸的反馈抑制和阻遏。

五.生物素的影响:在谷氨酸生产过程中,生物素的主要作用是作为乙酰辅酶A的辅酶影响磷脂的合成,进而影响谷氨酸产生菌细胞膜的通透性,同时也影响菌体的代谢途径。

使用生物素缺陷型菌株进行谷氨酸发酵时,必须限制发酵培养基中生物素的浓度,若生物素缺乏,菌株生长不好,初级代谢减慢或受阻,间接引起乙醛酸循环中四碳二羧酸氧化能力下降,使α-酮戊二酸和NADPH减少,从而使谷氨酸合成下降;若生物素过量,菌体生长快,解糖速度加快,比丙酮酸进一步氧化要快,造成乳酸积累。

生物素只有控制在亚适量时,才能既有利于谷氨酸的合成,又有利于谷氨酸向细胞外渗透。

目前,企业多采用添加玉米浆、糖蜜或纯生物素等形式控制生物素的亚适量。

谷氨酸发酵生产中生物素浓度的控制要根据菌种的特性、发酵工艺条件、发酵培养基的种类、发酵原料的来源、发酵过程中的糖浓度、pH 值和生物素浓度及供氧条件、设备状况等综合考虑。

谷氨酸的生产菌种及遗传育种思路主要的生产菌种:(1) 棒状杆菌属 谷氨酸棒状杆菌(Corynebacterium glutamicum):生物素缺陷型、温度敏感型;北京棒杆菌;钝齿棒杆菌(2) 短杆菌属 黄色短杆菌;天津短杆菌谷氨酸棒状杆菌对数期图片 谷氨酸棒状杆菌平板图片:育种思路:一是可通过诱变选育L-谷氨酸的结构类似物抗性突变株和营养缺陷型的回复突变株,以解除自身的反馈抑制和反馈阻遏,增大L-谷氨酸积累量。

可以选育酮基丙二酸抗性突变株、谷氨酸氧肟酸盐抗突变株、谷氨酰胺抗性突变株等。

二是增加L-谷氨酸的前体物的合成量,可通过如选育抗氟乙酸、氟化钠、氮丝氨酸、氟柠檬酸等突变株,以及强化CO 2固定反应突变株(选育以琥珀酸或苹果酸为唯一碳源,生长良好的菌株、选育氟丙酮酸敏感性突变株及选育丙酮酸缺陷、天冬氨酸缺陷突变株)使谷氨酸大量积累。

三是选育强化能量代谢的突变株。

谷氨酸高产菌的2个显著特点是:α-酮戊二酸继续向下氧化的能力缺陷和乙醛酸循环弱,使能量代谢受阻;TCA 循环前一阶段的代谢减慢。

强化能量代谢,可补救上述两点不足,使TCA 循环前一段代谢加强,谷氨酸合成的速度加快。

四是通过选育不能以L-谷氨酸为唯一碳源生长的突变株,由于该突变株切断或减弱L-谷氨酸向下一步的代谢途径,从而L-谷氨酸能得到持续的积累。

另外需要注意:1菌种能高产谷氨酸,首先要使菌种具备在高糖、高酸的培养基中仍能正常生长、代谢的能力,即在高渗透压的培养基中菌体的生长和谷氨酸的合成不受影响或影响很小。

2.选育细胞膜渗透性好的突变株。

3.选育减弱HMP 途径后段酶活性的突变株。

温度敏感突变株的初步介绍:温度敏感型谷氨酸生产菌是目前谷氨酸发酵工业上较为优良的菌株,菌株能够利用粗质原料粗玉米糖、糖蜜等发酵生产谷氨酸,对于添加部分甜菜糖蜜的发酵培养基菌株表现出高产酸水平,而且可以适当减少发酵培养基中生物素的用量,但菌株仍表现出高生物素的营养特性。

其他育种方技术:一.应用原生质体融合新技术选育谷氨酸生产菌二.应用转化法/转导法选育谷氨酸生产菌三.应用重组DNA 技术构建谷氨酸工程菌株谷氨酸发酵的优化问题谷氨酸发酵是典型的代谢控制发酵,环境条件对谷氨酸发酵具有重要的影响,控制最适宜的环境条件是提高发酵产率的重要条件。

(1)碳源:目前使用的谷氨酸生产菌均不能利用淀粉,只能利用葡萄糖、果糖等,有些菌种还能利用醋酸、正烷烃等做碳源。

在一定的范围内,谷氨酸产量随葡萄糖浓度的增加而增加,但若葡萄糖浓度过高,由于渗透压过大,则对菌体的生长很不利,谷氨酸对糖的转化率降低。

国内谷氨酸发酵糖浓度为125-150g/L,但一般采用流加糖工艺。

(2)氮源:常见无机氮源:尿素,液氨,碳酸氢铵。

常见有机碳源:玉米浆,豆浓,糖蜜。

当氮源的浓度过低时会使菌体细胞营养过度贫乏形成“生理饥饿”,影响菌体增殖和代谢,导致产酸率低。

随着玉米浆的浓度增高,菌体大量增殖使谷氨酸非积累型细胞增多,同时又因生物素过量使代谢合成磷脂增多,导致细胞膜增厚不利于谷氨酸的分泌造成谷氨酸产量下降。

碳氮比一般控制在100:15-30。

(3)磷:当磷浓度过高时,很容易发生发酵转换,转向合成缬氨酸;但磷浓度过低,则菌体生长不好,不利于高产酸。

(4)生物素:随着生物素添加量的不断增加,发酵产酸先增大后减小。

(5)溶氧:谷氨酸发酵是典型好氧发酵,溶解氧对谷氨酸产生菌种子培养影响很大。

溶解氧过低,菌体呼吸受到抑制,从而抑制生长,引起乳酸等副产物的积累;但是并非溶氧越高越好,当溶氧满足菌的需氧量后继续升高,不但会造成浪费还会由于高氧水平抑制菌体生长和谷氨酸的生成。

(6)pH:在谷氨酸发酵过程中,随着谷氨酸的不断生成,发酵液的pH值不断的减小,对谷氨酸菌产生抑制,为了维持发酵的最佳条件,采用流加尿素和液氨(现在大多采用的是液氨)的方法。

发酵法在微生物发酵阶段,主要是获得谷氨酸,在氨过量存在的情况下以谷氨酸铵的形式存在,所以从发酵罐出来的是谷氨酸铵,而不是我们所希望的谷氨酸。

(7)温度:在整个流加发酵中,并非一定要控制恒温培养,因为菌体最适生长温度不一定是菌体积累代谢终产物的最佳温度。

谷氨酸菌体最适生长温度为30-32℃;谷氨酸最适合成温度为34-37℃;发酵初期温度提高可以缩短细胞生长时间,减少发酵总时间;发酵中、后期的菌体活力较强,适当提高发酵温度有利于细胞膜渗透性和产酸,故温度应控制稍高一些。

(8)接种时间:利用对数生长期中后期的种子接种,可缩短其延滞期,而且菌体生长迅速,菌体浓度相对较高,有利于缩短发酵周期,提高代谢产物的产量。

(9)接种量:接种量大小直接影响发酵产酸,接种量太小,发酵前期生长缓慢,发酵整个时间长菌种的活力下降,发酵效果差;接种量过大,会引起菌体增长过快,单位体积内的养料和溶氧供应不足,代谢废物较多,不利于产酸。

接种量适宜,能减少染菌机会,缩短发酵周期。

因此,接种量一般要求以适量为原则。

流加操作的简单介绍:当前谷氨酸发酵中,采用的流加糖工艺比较常见,无论是低糖流加、中糖流加,还是高糖流加,如果要提高发酵产酸率,首要的问题是流加的糖浓度必须是高浓度,如果是低浓度甚至加入和初糖浓度相差不多的糖液,效果肯定是不明显的。

一般地说,流加糖浓度愈高,产酸率愈高,这可以从生产实践或简单的计算公式中找到答案。

理论上说,流加糖液浓度越高越好,但是浓缩糖浓度过高会增大成本,并不经济。

如果流加糖的浓度相对较低,则发酵中引入水的体积较大,对发酵环境造成不利影响,菌体因环境的频繁变化而受到损伤。

如果流加糖的浓度过高,则残糖含量会增加,导致糖未利用率升高,此外糖浓度过高还会引起诸多不便。

补料时要注意:不要加得过快,流加次数不宜太多,以免经常改变发酵液内的糖浓度。

发酵液糖含量尽量保持稳定,以免谷氨酸产生菌因生长环境经常变化或渗透压变化过大损伤细胞,造成菌体活力下降,影响产酸和转化率。

此外,流加糖的时间选择在发酵中前期较好,此时菌体活力旺盛。

简而言之,在整个发酵过程中,尽量往培养基中少引入水,少稀释,多加糖,总糖高,产酸就能提高,还要控制发酵周期,不降低转化率,全面平衡。

谷氨酸的提取及下游过程谷氨酸提取的基本方法有:等电点结晶法,特殊沉淀法,离子交换法,溶剂萃取法,液膜萃取法。

味之素公司的提取技术是先用高速离心法从发酵液中分离出菌体,再浓缩3倍后加硫酸调pH使谷氨酸结晶,提取收率约90%。

相关主题