闭区间上有界可测函数的逼近定理(用多项式逼近)
微积分中,特殊函数曲线是研究各种问题的重要内容,常有这样的需求:给定一个闭区间上有界可测函数 f(x),需要找出它的逼近函数 g(x),使得g(x)的误差最小。
通过把这个问题化形,我们就会得到一个多项式逼近定理。
多项式逼近定理是实变函数逼近法的重要一环,其核心思想是用多项式 Pn(x) 最佳逼近在 [a,b] 上一连续函数 f(x),即|f(x)-Pn(x)| < ε,则称 Pn(x) 为多项式逼近
f(x),ε 为误差限。
多项式逼近定理的具体内容可以用下面的公式来表示:
Pn(x) = a0 + a1x + a2x^2 + ... + anx^n
其中x ∈ [a,b], ai 是经验系数,确定 ai 的方法有很多,此处以高斯–拉普拉斯求积法为例:
ai = (1/bi)*[f(x) + ∑ (λj-1 * Pj(x))]
其中 bi 为常数, Pj(x) 为 j 阶多项式,公式中最右边的积分项由如下公式求得:∫(a,b) {f(x)*Pj(x)dx}
公式中的 aj 积分数值可以用下面的矩阵方式表示:
{ P0(x) P1(x) P2(x) P3(x)... Pn(x)}
B(x) = {... ... ... ... ... ...}
其中 B(x) 为系数矩阵,f(x) 为被逼近函数, ai 为一维向量。
多项式逼近定理主要用来估计闭区间上有界可测函数的值,其误差与精度直接相关系数矩阵 B(x) 的范畴,因此针对不同的问题,需要根据情况有不同的求解方案。
此外,多项式逼近定理还具有可行性,能够得到快速准确的解,因此被广泛应用于技术计算中。