当前位置:文档之家› 机械工程英语翻译-汉语翻译

机械工程英语翻译-汉语翻译

机械工程英语翻译-汉语翻译————————————————————————————————作者:————————————————————————————————日期:UNIT 1材料的类型材料可以按多种方法分类。

科学家常根据状态将材料分为:固体、液体或气体。

他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。

就工业效用而言,材料被分为工程材料和非工程材料。

那些用于加工制造并成为产品组成部分的就是工程材料。

非工程材料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。

工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料④聚合材料,等等。

金属和金属合金金属就是通常具有良好导电性和导热性的元素。

许多金属具有高强度、高硬度以及良好的延展性。

某些金属能被磁化,例如铁、钴和镍。

在极低的温度下,某些金属和金属化合物能转变成超导体。

合金与纯金属的区别是什么?纯金属是在元素周期表中占据特定位置的元素。

例如电线中的铜和制造烹饪箔及饮料罐的铝。

合金包含不止一种金属元素。

合金的性质能通过改变其中存在的元素而改变。

金属合金的例子有:不锈钢是一种铁、镍、铬的合金,以及金饰品通常含有金镍合金。

为什么要使用金属和合金?许多金属和合金具有高密度,因此被用在需要较高质量体积比的场合。

某些金属合金,例如铝基合金,其密度低,可用于航空航天以节约燃料。

许多合金还具有高断裂韧性,这意味着它们能经得起冲击并且是耐用的。

金属有哪些重要特性?密度定义为材料的质量与其体积之比。

大多数金属密度相对较高,尤其是和聚合物相比较而言。

高密度材料通常由较大原子序数原子构成,例如金和铅。

然而,诸如铝和镁之类的一些金属则具有低密度,并被用于既需要金属特性又要求重量轻的场合。

断裂韧性可以描述为材料防止断裂特别是出现缺陷时不断裂的能力。

金属一般能在有缺口和凹痕的情况下不显著削弱,并且能抵抗冲击。

橄榄球运动员据此相信他的面罩不会裂成碎片。

塑性变形就是在断裂前弯曲或变形的能力。

作为工程师,设计时通常要使材料在正常条件下不变形。

没有人愿意一阵强烈的西风过后自己的汽车向东倾斜。

然而,有时我们也能利用塑性变形。

汽车上压皱的区域在它们断裂前通过经历塑性变形来吸收能量。

金属的原子连结对它们的特性也有影响。

在金属内部,原子的外层阶电子由所有原子共享并能到处自由移动。

由于电子能导热和导电,所以用金属可以制造好的烹饪锅和电线。

因为这些阶电子吸收到达金属的光子,所以透过金属不可能看得见。

没有光子能通过金属。

合金是由一种以上金属组成的混合物。

加一些其它金属能影响密度、强度、断裂韧性、塑性变形、导电性以及环境侵蚀。

例如,往铝里加少量铁可使其更强。

同样,在钢里加一些铬能减缓它的生锈过程,但也将使它更脆。

陶瓷和玻璃陶瓷通常被概括地定义为无机的非金属材料。

照此定义,陶瓷材料也应包括玻璃;然而许多材料科学家添加了“陶瓷”必须同时是晶体物组成的约定。

玻璃是没有晶体状结构的无机非金属材料。

这种材料被称为非结晶质材料。

陶瓷和玻璃的特性高熔点、低密度、高强度、高刚度、高硬度、高耐磨性和抗腐蚀性是陶瓷和玻璃的一些有用特性。

许多陶瓷都是电和热的良绝缘体。

某些陶瓷还具有一些特殊性能:有些是磁性材料,有些是压电材料,还有些特殊陶瓷在极低温度下是超导体。

陶瓷和玻璃都有一个主要的缺点:它们容易破碎。

陶瓷一般不是由熔化形成的。

因为大多数陶瓷在从液态冷却时将会完全破碎(即形成粉末)。

因此,所有用于玻璃生产的简单有效的—诸如浇铸和吹制这些涉及熔化的技术都不能用于由晶体物组成的陶瓷的生产。

作为替代,一般采用“烧结”或“焙烧”工艺。

在烧结过程中,陶瓷粉末先挤压成型然后加热到略低于熔点温度。

在这样的温度下,粉末内部起反应去除孔隙并得到十分致密的物品。

光导纤维有三层:核心由高折射指数高纯光传输玻璃制成,中间层为低折射指数玻璃,是保护核心玻璃表面不被擦伤和完整性不被破坏的所谓覆层,外层是聚合物护套,用于保护光导纤维不受损。

为了使核心玻璃有比覆层大的折射指数,在其中掺入微小的、可控数量的能减缓光速而不会吸收光线的杂质或搀杂剂。

由于核心玻璃的折射指数比覆层大,只要在全内反射过程中光线照射核心/覆层分界面的角度比临界角大,在核心玻璃中传送的光线将仍保留在核心玻璃中。

全内反射现象与核心玻璃的高纯度一样,使光线几乎无强度损耗传递长距离成为可能。

复合材料由两种或更多材料构成。

例子有聚合物/陶瓷和金属/陶瓷复合材料。

之所以使用复合材料是因为其全面性能优于组成部分单独的性能。

例如:聚合物/陶瓷复合材料具有比聚合物成分更大的模量,但又不像陶瓷那样易碎。

复合材料有两种:纤维加强型复合材料和微粒加强型复合材料。

纤维加强型复合材料加强纤维可以是金属、陶瓷、玻璃或是已变成石墨的被称为碳纤维的聚合物。

纤维能加强基材的模量。

沿着纤维长度有很强结合力的共价结合在这个方向上给予复合材料很高的模量,因为要损坏或拉伸纤维就必须破坏或移除这种结合。

把纤维放入复合材料较困难,这使得制造纤维加强型复合材料相对昂贵。

纤维加强型复合材料用于某些最先进也是最昂贵的运动设备,例如计时赛竞赛用自行车骨架就是用含碳纤维的热固塑料基材制成的。

竞赛用汽车和某些机动车的车体部件是由含玻璃纤维(或玻璃丝)的热固塑料基材制成的。

纤维在沿着其轴向有很高的模量,但垂直于其轴向的模量却较低。

纤维复合材料的制造者往往旋转纤维层以防模量产生方向变化。

微粒加强型复合材料用于加强的微粒包含了陶瓷和玻璃之类的矿物微粒,铝之类的金属微粒以及包括聚合物和碳黑的非结晶质微粒。

微粒用于增加基材的模量、减少基材的渗透性和延展性。

微粒加强型复合材料的一个例子是机动车胎,它就是在聚异丁烯人造橡胶聚合物基材中加入了碳黑微粒。

聚合材料聚合物具有一般是基于碳链的重复结构。

这种重复结构产生链状大分子。

由于重量轻、耐腐蚀、容易在较低温度下加工并且通常较便宜,聚合物是很有用的。

聚合材料具有一些重要特性,包括尺寸(或分子量)、软化及熔化点、结晶度和结构。

聚合材料的机械性能一般表现为低强度和高韧性。

它们的强度通常可采用加强复合结构来改善。

聚合材料的重要特性尺寸:单个聚合物分子一般分子量为10,000到1,000,000g/mol之间,具体取决于聚合物的结构—这可以比2,000个重复单元还多。

聚合物的分子量极大地影响其机械性能,分子量越大,工程性能也越好。

热转换性:聚合物的软化点(玻璃状转化温度)和熔化点决定了它是否适合应用。

这些温度通常决定聚合物能否使用的上限。

例如,许多工业上的重要聚合物其玻璃状转化温度接近水的沸点(100℃, 212℉),它们被广泛用于室温下。

而某些特别制造的聚合物能经受住高达300℃(572℉)的温度。

结晶度:聚合物可以是晶体状的或非结晶质的,但它们通常是晶体状和非结晶质结构的结合物(半晶体)。

原子链间的相互作用:聚合物的原子链可以自由地彼此滑动(热可塑性)或通过交键互相连接(热固性或弹性)。

热可塑性材料可以重新形成和循环使用,而热固性与弹性材料则是不能再使用的。

链内结构:原子链的化学结构对性能也有很大影响。

根据各自的结构不同,聚合物可以是亲水的或憎水的(喜欢或讨厌水)、硬的或软的、晶体状的或非结晶质的、易起反应的或不易起反应的。

UNIT 2对热处理的理解包含于对冶金学较广泛的研究。

冶金学是物理学、化学和涉及金属从矿石提炼到最后产物的工程学。

热处理是将金属在固态加热和冷却以改变其物理性能的操作。

按所采用的步骤,钢可以通过硬化来抵抗切削和磨损,也可以通过软化来允许机加工。

使用合适的热处理可以去除内应力、细化晶粒、增加韧性或在柔软材料上覆盖坚硬的表面。

因为某些元素(尤其是碳)的微小百分比极大地影响物理性能,所以必须知道对钢的分析。

合金钢的性质取决于其所含有的除碳以外的一种或多种元素,如镍、铬、锰、钼、钨、硅、钒和铜。

由于合金钢改善的物理性能,它们被大量使用在许多碳钢不适用的地方。

下列讨论主要针对被称为普通碳钢的工业用钢而言。

热处理时冷却速率是控制要素,从高于临界温度快速冷却导致坚硬的组织结构,而缓慢冷却则产生相反效果。

简化铁碳状态图如果只把注意力集中于一般所说的钢上,经常要用到简化铁碳状态图。

铁碳状态图中靠近三角区和含碳量高于2%的那些部分对工程师而言不重要,因此将它们删除。

如图2.1所示的简化铁碳状态图将焦点集中在共析区,这对理解钢的性能和处理是十分有用的。

在此图中描述的关键转变是单相奥氏体(γ) 随着温度下降分解成两相铁素体加渗碳体组织结构。

控制这一由于奥氏体和铁素体的碳溶解性完全不同而产生的反应,使得通过热处理能获得很大范围的特性。

为了理解这些过程,考虑含碳量为0.77%的共析钢,沿着图2.1的x-x’线慢慢冷却。

在较高温度时,只存在奥氏体,0.77%的碳溶解在铁里形成固溶体。

当钢冷却到727℃(1341℉)时,将同时发生若干变化。

铁需要从面心立方体奥氏体结构转变为体心立方体铁素体结构,但是铁素体只能容纳固溶体状态的0.02%的碳。

被析出的碳与金属化合物Fe3C形成富碳的渗碳体。

本质上,共析体的基本反应是奥氏体0.77%的碳→铁素体0.02%的碳+渗碳体6.67%的碳。

由于这种碳成分的化学分离完全发生在固态中,产生的组织结构是一种细致的铁素体与渗碳体的机械混合物。

通过打磨并在弱硝酸酒精溶液中蚀刻制备的样本显示出由缓慢冷却形成的交互层状的薄片结构。

这种结构由两种截然不同的状态组成,但它本身具有一系列特性,且因与低倍数放大时的珠母层有类同之处而被称为珠光体。

含碳量少于共析体(低于0.77%)的钢称为亚共析钢。

现在来看这种材料沿着图2.1中y-y’ 线冷却的转变情况。

在较高温度时,这种材料全部是奥氏体,但随着冷却就进入到铁素体和奥氏体稳定状态的区域。

由截线及杠杆定律分析可知,低碳铁素体成核并长大,剩下含碳量高的奥氏体。

在727℃(1341℉)时,奥氏体为共析组成(含碳量0.77%),再冷却剩余的奥氏体就转化为珠光体。

作为结果的组织结构是初步的共析铁素体(在共析反应前的铁素体)和部分珠光体的混合物。

过共析钢是含碳量大于共析量的钢。

当这种钢冷却时,就像图2.1的z-z’线所示,除了初步的共析状态用渗碳体取代铁素体外,其余类似亚共析钢的情况。

随着富碳部分的形成,剩余奥氏体含碳量减少,在727℃(1341℉)时达到共析组织。

就像以前说的一样,当缓慢冷却到这温度时所有剩余奥氏体转化为珠光体。

应该记住由状态图描述的这种转化只适合于通过缓慢冷却的近似平衡条件。

如果缓慢加热,则以相反的方式发生这种转化。

然而,当快速冷却合金时,可能得到完全不同的结果。

因为没有足够的时间让正常的状态反应发生,在这种情况下对工程分析而言状态图不再是有用的工具。

相关主题