当前位置:文档之家› 电容的主要失效模式、失效原理及预防措施

电容的主要失效模式、失效原理及预防措施

通过密封橡胶向外扩散,在工作条件下水分 化
产生电化学离解
固体钽电 短路

氧化膜缺陷、钽块与阳极引出线产生相对位 移、阳极引出钽丝与氧化膜颗电容器粒接触
开裂
热应力、机械应力
瓷介电容 短路
介质材料缺陷、生产工艺缺陷、银电极迁移

低 电 压 失 低电压失效介质内部存在空洞、裂纹和气孔

等缺陷工作条件类别
预防措施及注意事项
应确保不含卤素,在采用此类材料前应注意
助焊剂已完全干透
(7)使用清洁剂以后必须充分干燥,采用免洗
型助焊剂也需充分干燥
(8)确保电容的封口位置不受压
(9)当采用胶黏剂或其它材料固定元件时,应
小心不要让此类材料完全覆盖电容器的封
口,同时应确保电容器的完全阀不被封闭
储存
(1)电容器应储存在正常的温度、湿度条件 下。避免受到阳光直射
式和失效机理
类别
失效模式 失效原理
密封不佳、橡胶老化龟裂、高温高压下电解
漏液
液挥发,密封工艺不佳、阳极钽丝表面粗糙、
负极镍引线焊接不当液体
工作电压中交流成分过大、氧化膜介质缺陷、
炸裂
存在氯离子或硫酸根之类的有害离子、内气
压高
铝电解电 开路

电化学腐蚀、引出箔片和阳极接触不良、阳 极引出箔片和焊片的铆接部分氧化
类别
工作条件 预防措施及注意事项
(1)确定工作温度及纹波电流在规定范围内
工 作 温 度 纹波电流
及 纹 波 电 (2)当并联两个或更多电容时,需注意接线电
流 铝电解电

阻应计算在内 (3)注意电容工作时的热能导致设备内部温 度的提升
(1)注意电容的正负极,不应施加反向电压或
施加电压 者交流电压
(2)如线路上可能出现反向电压,应采用双极
物清洗干净
(1)不得使用高活性溶剂
(2)清洗电路板时,温度不得超过 50℃,浸泡
组 装 后 的 时间不得超过 30min。使用超声波清洗时不
清洗
得超过 4H4℃m,振动输出 00Wm,已安装电容
器不得与任何清洗器具接触,也不可用刷子
之类的工具搓洗电容器
性的电解电容
(3)应确定交流电压的峰值不超过电容的额
定电压
(4)当串联数个电容时,应使用相同规格的电
容,同时也需并联式添加平衡电阻
(5)不应用于经常性急速充/放电的线路上
(1)电容器如接触水、盐水、油或受潮后不应
马上使用
(2)不要在硫化氢、亚硫酸、氯气或其它有害
工作环境 气体下使用电容器
(3)臭氧、紫外光或其它幅射影响下的地方不
瓷介电容

基板配置(ຫໍສະໝຸດ )在同一基板或焊盘上连续焊接多个元件 时,焊盘的设计应可以使每个元件的焊接点 被阻焊区隔离开
(3)在设计焊盘和表贴电容器的位置时,应考
虑将后续工序可能产生的应力降到最低
(1)焊接前应在 100℃-130℃下预热
(2)电容器和熔化的焊料之间的温差不得大
焊接
于 100℃ (3)焊接后应尽可能采取自然冷却
短路
阳极氧化膜破裂、氧化膜局部损伤、电解液 老化或干涸、工艺缺陷
电 容 量 下 电解液损耗较多、低温下电解液粘度增大损

耗增大
漏 电 流 增 氧化膜致密性差、氧化膜损伤、氯离子严重

沾污、工作电解液配方不佳原材料纯度不高、
铝箔纯度不高
瞬时开路 电解液数量不足
钽电解
电解液消耗、在储存条件下电解液中的水分 电参数变
工作电压
(2)在常规条件下,工作电压应降至额定电压 的 50%以下
钽电解电
(3)用于开关电路、充/放电电路时,建议工作
容器
电压降至额定电压的 30%以下
(1)极性一定要正确
反向电压
(2)若电路中的反向电压不可避免,25℃下不 得超过额定电压的 10%或 1V,85℃下不得超
过 5%或 0.5V,小者优先
(4)所用的烙铁尖顶直径最大为 1.0mm(5)烙
铁不得直接碰到电容器上
(1)根据所用的助焊剂来选用适当的清洗溶
清洗条件 剂
(2)确认清洗过程不影响电容器的特性
注意监控电容器储存区域的温度和湿度条
储存
件。推荐的储存条件:室温低于 40℃,湿度低
于 70%RH
(1)工作电压与纹波电压峰值之和不应超过
额定电压
应使用电容器(4)不要在高度振荡、冲击环境
下使用电容器
(1)不要错装电极
(2)确保螺钉接线电容器工作时安全阀向上
(3)在安全阀附近不要安放线路或导电体
(4)260℃下焊接时间不超过 10,或 350℃时
组装
不超过 3s
(5)清洗助焊剂时应采用水溶性或高级醇类
清洁剂
(6)当采用胶黏剂或此类固定元件用材料时,
(1)施加在电容器的压力不得超过 49N(工作
端直径为 1.5mm),时间不得超过 5s
(2)任何型号的电容器重复焊接不得超过两
组装

(3)在第 1 次焊接后散热 2h 以上才能进行第
2 次焊接,且第 2 次焊接完成后,应立即进行
清洗
(1)焊剂中氯和胺的含量越少越好
焊剂
(2)使用含氯或胺的焊剂后,一定要将其残留
电容的主要失效模式、失效原理及预防措施
由于不同电容器的制作工艺和结构差异较大,电容器的失效机理
要复杂得多,常见的失效模式主要有以下几种:击穿、开路、电参数退
化(包括电容量退化、损耗和绝缘电阻或者漏电流退化等).漏液、开
裂等。漏液是铝电解电容和液体钽电容器最常见的一种失效模式,瓷
介电容器最常见的失效模式是开裂。下列是常见电容器的主要失效模
(2)最长存放期为 3 年
(1)工业设备用电容器应定时检查,包括:外
观(如安全阀情况)和电特性(如容量、漏电) 防范性检
(2)如电容器使用寿命到期,应及时更换,而 查
且设备内的电容器应同时更换。新、旧电器
一起使用会引起纹波电流或分压不平衡
工作电压 电容器的工作电压应低于其额定电压
(1)慎重考虑焊盘的大小和配置
相关主题