当前位置:
文档之家› 插值法(lagrange插值,牛顿插值)
插值法(lagrange插值,牛顿插值)
函数l0(x)及l`1(x)为线性插值基函数
2016/8/14 16
线性插值举例
例1: 已知 100 10 , 121 11,求 y 代入点斜式插值多项式
y1 y0 L1 ( x) y0 ( x x0 ) x1 x0
115
得 y=10.71428 精确值为 10.723805,故这个结果有3位有 效数字。
Ln ( x) yi li ( x)
i 0
n
满足
但
Ln ( xi ) f ( xi )
x [a, b]
i 0,1,, n Ln ( x) f ( x) 不会完全成立
因此,插值多项式存在着截断误差,那么我们怎样估 计这个截断误差呢?
2016/8/14 29
Ln ( x)
f ( n1) ( ) n1 ( x) Rn ( x) (n 1)!
(115–100)(115–144) (115–121)(115–144) L2(115) = + * 11 * 10 (121–100)(121–144) (100–121)(100–144) (115–100)(115–121) + * 12 (144–100)(144–121) = 10.7228
• 这就是所谓的拉格朗日(Lagrange)插值。
li(x)(i=0,1,…,n)的构造。
2016/8/14
11
2016/8/14
12
§ 2.2.1
线性插值与抛物插值
一、线性插值—点斜式 问题 已知函数y=f(x)在点x0,x1上的值为y0,y1,求 作一次式 L1 ( x),使满足条件
L1 ( x0 ) y0 , L1 ( x1 ) y1
(k 0,1,2,, n)
且
n1 ( x) Ln ( x) yk ' ( x x ) k 0 k n 1 ( xk )
n
2016/8/14
23
总 结
于是, y f ( x)在节点xi (i 0,1,, n)上, 以li ( x) (i 0,1,, n) 为插值基函数的插值多 项式(记为Ln ( x))为
2016/8/14 22
从而
( x x0 )(x x1 )( x xk 1 )(x xk 1 )( x xn ) lk ( x ) ( xk x0 )(xk x1 )( xk xk 1 )(xk xk 1 )( xk xn )
n1 ( x) 1 ( xk ) ( x xk )n
这就是插值问题,上式为插值条件
称函数P( x)为函数f ( x)的插值函数 如果P( x)为多项式函数 , 则称之为插值多项式
点 xi , i 0,1,2,, n, 称为插值节点
区间 [a, b]称为插值区间 如函数y sin x, 若给定 [0, ]上5个等分点
其插值函数的图象如下图
2016/8/14 5
其中 n 1 ( x) ( x xi ) , (a, b) , 且依赖于x.
i 0 n
2016/8/14
30
证明:假设在区间[a,b]上f(x)的插值多项式为 Ln ( x) 令
Rn ( x) f ( x) Ln ( x)
显然在插值节点为 xi (i 0,1,, n)上 Rn ( xi ) f ( xi ) Ln ( xi ) 0 , i 0,1,, n 因此Rn ( x)在[a, b]上至少有n 1个零点
由Cramer法则,线性方程组(4)有唯一解 定理1. 若插值节点 xi x j (i j ),
Pn ( xi ) yi i 0,1,2 ,, n
则满足插值条件
--------(3) --------(2)
的插值多项式 2 n P ( x ) a a x a x a x n 0 1 2 n 存在且唯一.
2016/8/14 17
二、抛物插值
问题 求作二次式 L2 ( x) ,使满足条件
L2 ( x j ) y j
( j k 1, k , k 1)
二次插值的几何解释是用通过三个点
的抛物线来近似考察曲线,故称为拋物插值。类似于线性 插值,构造基函数,要求满足下式:
L2(x) yk 1lk 1 ( x) yklk ( x) yk 1lk 1 ( x)
2016/8/14
和用线性插值相比,有效数字增加一位
20
2.2.2 拉格朗日n次插值多项式
为了构造 Ln ( x) ,我们先定义n次插值基函数。
定义: 若n次多项式 li ( x)
(i 0,1, n) 在n+1个节点
x0 x1 xn 上满足条件
就称这n 1个n次多项式l0 ( x), l1 ( x),, ln ( x) 为节点x0 ,x1, ,xn上的n次插值基函数。
2016/8/14 24
例3:求过点(2,0) (4,3) (6,5) (8,4) (10,1)的 拉格朗日插值多项式。
2016/8/14
25
2016/8/14
26
2016/8/14
27
2016/8/14
28
§ 2.2.3 插值余项与误差估计
一、插值余项
从上节可知 , y f ( x)的Lagrange 插值
Ln ( x) y0l0 ( x) y1l1 ( x) ynln ( x)
i 0 j 0 j i n n
(x x j ) ( xi x j )
yi
称 Ln ( x) 为y=f(x)的拉格朗日插值多项式 称 li ( x)(i 0,1,, n) 为n次拉格朗日插值基函数
2016/8/14 18
2016/8/14
19
抛物插值举例2
(x–x1)(x–x2) (x–x0)(x–x2) f ( x 0) + f(x1) L2(x)= (x0–x1)(x0–x2) (x1–x0)(x1–x2) (x–x0)(x–x1) + f(x2) (x2–x0)(x2–x1) x0=100, x1=121, x2=144 f(x0)=10, f(x1)=11, f(x2)=12
sinxµ IJ å Öµ
1
yy
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0
0.5
1
1.5 1.5
2 2
2.5 2.5
3 3
3.5 3.5
x x x
对于被插函数 f ( x)和插值函数 P( x) 在节点xi处的函数值必然相等 但在节点外 P( x)的值可能就会偏离 f ( x) 因此P( x)近似代替 f ( x)必然存在着误差
2016/8/14 6
整体误差的大小反映了插值函数的好坏
为了使插值函数更方便在计算机上运算,一般插值函 数都使用代数多项式和有理函数 本章讨论的就是代数插值多项式
二、代数插值多项式的存在唯一性
设函数 y f ( x) 在区间 [a, b]上的代数插值多项式为
2 n P ( x ) a a x a x a x n 0 1 2 n
| x1 x0 |
很小时
2016பைடு நூலகம்8/14
15
也可表示为如下对称形式:
L1(x) y0l0 ( x) y1l1 ( x)
其中,
x x1 l0(x) x0 x1
x x0 l1 ( x) x1 x0
显然,
l0(x0 ) 1, l0(x1 ) 0; l1(x1 ) 1, l1(x0 ) 0;
Pn ( xi ) yi
i 0,1,2 ,, n
其中 a i为实数,就称P(x)为插值多项式,相应的插值法 称为多项式插值;若P(x)为分段的多项式,就称为分段 插值;若P(x)为三角多项式,就称为三角插值。
本章只讨论多项式插值与分段插值
2016/8/14 10
§ 2.2
拉格朗日插值
拉格朗日( Lagrange )插值公式 ( 以下统称 • 此插值问题可表述为如下: n 多项式 Lagrange 插值公式 ) 的基本思想是,把 Ln ( x) ,使满足条件 • 为 问题 求作次数 Ln xi yi , (i 0,1,, n) pn(x) 的构造问题转化为 n+1 个插值基函数
其几何意义,就是通过两点 A( x0 , y0 ), B( x1 , y1 ) 的 一条直线。
2016/8/14
13
L1
2016/8/14
14
由直线两点式可知,通过A,B的直线方程为
y1 y0 y y0 ( x x0 ) L1 ( x) x1 x0
称为线性插值(n=1的情况),分为内插与外推。 适用情况:
本章主要介绍有关插值法的一些基本概念, 及多项式插值的基础理论和几个常用的插 值方法:拉格朗日插值、分段线性插值、 牛顿插值、埃尔米特插值和三次样条插值.
2016/8/14
3
§ 2.1 引言
一、插值问题
对函数f ( x),其函数形式可能很复杂 , 且不利于在计算机上
运算, 假如可以通过实验或测 量, 可以获得f ( x)在区间 [ a , b] 上的一组n 1个不同的点
第二章 插值法
2016/8/14
1
第二章 插值法
§ 2.1 引言 § 2.2 拉格朗日插值 § 2.3 差商与牛顿插值公式 § 2.4 差分与等距节点插值 § 2.5 埃尔米特插值 § 2.6 分段低次插值 § 2.7 三次样条插值
2016/8/14 2
本章要点 用简单的函数(如多项式函数)作为一个 复杂函数的近似,最简单实用的方法就是 插值.