当前位置:
文档之家› 环境规划课件 水环境容量计算
环境规划课件 水环境容量计算
水环境容量计算
水环境容量:反映流域的自然属性(水文特性),又反映人类对环境 的需求(水质目标) W自净 水环境容量= 稀释容量(W稀释) +自净容量(W自净) 两部分
自净
W稀释 稀释
W
排放方式
稀释容量:在给定水域的来水污染物浓度低于出水水质目标时,依靠稀 释作用达到水质目标所能承纳的污染物量
自净容量:由于沉降、生化、吸附等物理、化学和生物作用,给定水域 达到水质目标所能自净的污染物量
功能区划水域没有常规性监测断面,可以选择功能
区的下断面或者重要的用水点作为控制节点。
控制断面的选取要注意以下几个问题
断面不要设在排污混合区内(由排放浓度过渡到功能 区标准的排污混合区或过渡区); 断面一定要反映敏感点的水质。大部分水环境功能区内 都允许有取水口(饮用水、工业用水、农业用水)或鱼 类索饵、产卵等活动区存在,断面设置应考虑这些敏感 点的水质保护,以保证功能区真正达标。
水文条件
其他河段设计流量的计算选取枯水期月平均流量作为计算 样本
有闸坝控制的河段,关闸时间较长时,可以考虑近10年
平均水位下的水体容积作为设计流量或最小下泄流量。
对于一般湖泊或水库,分别按照近10年最低月平均水位 水位相应的蓄水量和死库容的蓄水量确定设计流量。
有条件的地区,可对丰平枯水期特征明显的河流,以及按
计算步骤2
选择控制点(或边界)根据水环境功能区划和水域内的水 质敏感点位置分析,确定水质控制断面的位置和浓度控制 标准。如存在污染混合区,则需根据环境管理的要求确定 污染混合区的控制边界。 建立水质模型 选择零维、一维或二维水质模型,并确定模 型所需的各项参数。 容量计算分析 应用设计水文条件和上下游水质限制条件进 行水质模型计算,利用试算法(根据经验调整污染负荷分 布反复试算,直到水域环境功能区达标为止)或建立线性 规划模型(建立优化的约束条件方程)等方法确定水域的 水环境容量。 环境容量确定 在容量计算分析基础上,扣除非点源污染影 响部分,则为实际环境管理可利用的水环境容量。
需要国家协调省际水环境功能区目标差异和目标水质的, 可以提交总局和技术指导组解决。
设计流速:河流的设计流速为对应设计流量条件下的
流速。
边界条件
本底浓度
参考上游水环境功能区标准,以对应国家环境质量标准的上限 值(达到对应国家标准的最大值)为本底浓度(来水浓度) 对于跨界水环境功能区本底浓度需要考虑国家和省(直辖市、 自治区)政府部门规定的出、入断面浓度限值。
上界 1 2 3
下界
1# 上界 下界
排污口概化示意图
距离较远并且排污量均比较小的分散排污口,可概化 为非点源入河,仅影响水域水质本底值,不参与排污口 优化分配计算。
水质模型
模型的类型 零维模型 一维模型: 二维模型:
零维模型
对河流,表现形式为河流稀释模型;对于湖泊与水库, 主要有盒模型 符合下列两个条件之一的环境问题可概化为零维问题:
影响要素
水域特性 几何特征(岸边形状、水底地形、水深或体积); 水文特征(流量、流速、降雨、径流等); 化学性质(pH值,硬度等); 物理自净能力(挥发、扩散、稀释、沉降、吸附);
化学自净能力(氧化、水解等);
生物降解(光合作用、呼吸作用)。
环境功能要求
不同功能区划,对水环境容量的影响很大:水质要求高的 水域,水环境容量小;水质要求低的水域,水环境容量 大;
V—湖泊中水的体积(m3); Q—平衡时流入与流出湖泊的流量(m3/a); CE—流入湖泊的水量中水质组分浓度(g/m3); C—湖泊中水质组分浓度(g/m3); Sc—如非点源一类的外部源和汇(m3); r(c)—水质组分在湖泊中的反应速率。
湖泊、水库的盒模型
如果反应器中只有反应过程,则Sc=0,则公式变为:
VdC QC E QC ( c )V dt
当反应器内的反应符合一级反应动力学,且是衰减反应时,则
(c) KC
公式又变为以下形式
VdC QC E QC KCV dt
K是一级反应速率常数(1/t)
湖泊、水库的盒模型
当反应器处于稳定状态时,dC/dt=0,可得到下式
设计条件
计算单元
水环境容量计算单元的划分,采用节点划分法 从保证重要水域水体功能角度出发,以大中城市及重要工 业区、工业企业生活等重要和敏感的区域或断面作为划
分节点,把河道划分为若干较小的计算单元进行水环境
容量计算。
控制点
一般情况下,计算单元内可以直接按照水环境功能区 上下边界、监测断面等设置控制点或节点。 某一功能区划水域内存在多个常规性监测断面, 选取最高级别的监测断面 最有代表性的监测断面 最能反映最大取水量取水口水质的监测断面。
污染物浓度在断面横向方向变化不大,横向和垂向的污 染物浓度梯度可以忽略。
计算步骤1
水域概化 将天然水域(河流、湖泊水库)概化成计算水域 基础资料调查与评价 水域水文资料(流速、流量、水位、体积等) 水域水质资料(多项污染因子的浓度值)
收集水域内的排污口资料(废水排放量与污染物浓度)
支流资料(支流水量与污染物浓度) 取水口资料(取水量,取水方式) 污染源资料等(排污量、排污去向与排放方式) 并进行数据一致性分析,形成数据库。
水质目标值 单位时间
水环境功能区相应环境质量标准类别的上限值为水质目标值。
一般指一年。最枯月或最枯季的环境容量换算为全年,作为 功能区的年环境容量。
排放浓度采用mg/l单位,流量采用m3/s单位,计算结果是瞬 时允许污染物流量(mg/s), 需换算成年容量。
排污方式
当排污口污水排放流量较大(根据各区域特征确定) 现状排污口,必须作为独立的排污口处理。 其他排污口,可以适当简化。
排放浓度与超标率(Pr)关系
在超标率计算时,假定排污总量中排污水量不变,改变排污浓度, 在给定达标率(或超标率)的条件下反推,乘以排污水量,可求出 允许纳污量。
湖泊、水库的盒模型
以年为时间尺度来研究湖泊、水库的富营养化过程时,可把 湖泊看作一个完全混合反应器,这样盒模型的基本方程为
VdC QC E QC SC ( c )V dt
水环境容量基本特征
资源性 水环境容量是一种自然资源—能容纳一定量的 污染物也能满足人类生产、生活和生态系统的需要;水环 境容量是有限的可再生自然资源。 区域性 受各类区域的水文、地理、气象条件等因素的影 响,不同水域对污染物的物理、化学和生物净化能力存在 明显的差异,导致水环境容量有明显的地域性特征。 系统性 河流、湖泊等水域一般处在大的流域系统中,水 域与陆域、上游与下游、左岸与右岸构成不同尺度的空间 生态系统,因此,在确定局部水域水环境容量时,必须从 流域的角度出发,合理协调流域内各水域的水环境容量。
模型分段模拟,但计算精度和实用性较差,最好用一维模 型求解。
对湖泊、水库 热污染问题;
不存在分层现象、无须考虑混合区范围的富营养化问题和环境问题均可按零维盒模型处理。
定常设计条件下河流稀释混合模型
点源,河水、污水稀释混合方程
C
C p Q p CE QE Q p QE
湖 泊
污染 源数 据
污水流量QE 污水外排浓度CE 悬浮固体浓度SS 背景浓度Cp
QE 、CE指设计条件下的外排流量和浓度 考虑溶解态和颗粒态污染物时需使用SS值, 常用于重金属
一维模型
对于河流而言,一维模型假定污染物浓度仅在河流纵向 上发生变化,主要适用于同时满足以下条件的河段:
宽浅河段; 污染物在较短的时间内基本能混合均匀;
若排污口距离较近,可把多个排污口简化成集中的排
污口
排污口概化的重心计算: X=(Q1C1X1+Q2C2X2+·· nCnXn)/(Q1C1+Q2C2+·· nCn) ·Q · ·Q · X:概化的排污口到功能区划下断面或控制断面的距离; Qn:第n个排污口(支流口)的水量; Xn:第n个排污口(支流口)到功能区划下断面的距离; Cn:第n个排污口(支流口)的污染物浓度;
河水流量与污水流量之比大于10~20;
不需考虑污水进入水体的混合距离;
常用零维模型解决的问题
对河流
不考虑混合距离的重金属污染物、部分有毒物质等其它保
守物质的下游浓度预测与允许纳污量的估算;
有机物降解性物质的降解项可忽略时,可采用零维模型; 对于有机物降解性物质,当需要考虑降解时,可采用零维
QCE QC KCV 0
1 C CE 1 K t
t=V/Q, t为停留时间
零维模型数据和参数总结表
类别 水力 数据
数据
河 流 流量Q 设计流量如7Q10 横截面积A 水深H 水力停留时间tw 平均深度H 水体容积V 湖泊表面积A
注释 由于稀释容量的原因,流量的正确估计很重 要。由于模型是在设计条件下进行的,因而 设计流量的计算是必需的。当河流被视为完 全混合反应时,应计算A, H. tw是湖泊等滞流水体模型的一个重要参数, 由V/Q计算
照最枯流量计算没有水环境容量的情况,按照分水期进行
水环境容量的计算(需要注明对应的水期月份),汇总得 到全年的水环境容量。
边界条件
控制因子:COD和氨氮主要控制因子.湖库增加总磷、 总氮和叶绿素a指标;
质量标准
省界功能区水质目标为依据,
省界断面水质标准以国家制定的流域规划确定的目标和 省内断面水质标准以水环境功能区划为水环境容量计算 的依据,跨市、县界的功能区协调方案由各省解决。