当前位置:文档之家› 第十一章核酸的代谢

第十一章核酸的代谢

第十一章核酸的代谢第一节核酸降解和核苷酸代谢⏹核酸的基本结构单位是核苷酸,核酸代谢与核苷酸代谢密切相关,细胞内存在多种游离的核苷酸,是代谢中极为重要的物质,几乎参加细胞内所有的生化过程:⏹1、核苷酸是核酸生物合成的前体。

⏹2、核苷酸衍生物是许多生物合成的中间物。

如:UDP-葡萄糖是糖原合成的中间物。

CDP-二脂酰甘油是磷酸甘油酯合成的中间物。

⏹3、A TP是生物能量代谢中通用的高能化合物。

⏹4、腺苷酸是三种重要辅酶:烟酰胺核苷酸(NAD NADP)、黄素嘌呤二核苷酸(FAD)和辅酶A的组分。

⏹5、某些核苷酸是代谢的调节物质。

⏹cAMP,cGMP是许多激素引起的胞内信使⏹核酸降解为核苷酸,核苷酸还能进一步分解,在生物体内核苷酸可由其他化合物合成,某些辅酶的合成与核酸的代谢亦有关。

⏹讲授内容:核糖核酸、脱氧核糖核酸的分解与合成。

一. 核酸的解聚和核苷酸的降解⏹核酸降解酶种类⏹核酸外切酶: 催化核酸从3’端或5’端解聚,形成5’-核苷酸和3’-核苷酸。

⏹核酸内切酶: 水解核酸分子内的磷酸二酯键。

⏹限制性内切酶: 专一识别并水解外源双链DNA上特定位点的核酸内切酶。

⏹核苷酸降解酶:⏹核苷酸酶:核苷酸水解为核苷和磷酸。

⏹核苷酸+ H2O 核苷+Pi⏹核苷磷酸化酶: 水解核苷为碱基和戊糖-1-磷酸。

核苷+ 磷酸核苷磷酸化酶碱基+ 戊糖-1-磷酸⏹核苷水解酶: 水解核苷为碱基和戊糖。

⏹存在于植物和微生物中。

核糖核苷+ H2O 核苷水解酶碱基+ 戊糖只对核糖核苷作用,反应不可逆。

二. 碱基降解⏹㈠. 嘌呤碱的分解⏹⒈脱氨⏹动物组织腺嘌呤脱氨酶含量极少,而腺嘌呤核苷酸脱氨酶和腺嘌呤核苷脱氨酶的活性高,腺嘌呤的脱氨可在其核苷和核苷酸水平上进行。

⏹鸟嘌呤脱氨在鸟嘌呤水平上。

⏹鸟嘌呤核苷鸟嘌呤黄嘌呤尿酸⏹⒉转变为尿酸⏹鸟嘌呤+ H2O 鸟嘌呤脱氨酶黄嘌呤+ NH3⏹次黄嘌呤+ O2 + H2O 黄嘌呤氧化酶黄嘌呤+ H2O2⏹黄嘌呤+ O2 + H2 O 黄嘌呤氧化酶尿酸+ H2O2痛风:嘌呤代谢障碍有关,正常血液:2-6mg /100ml, 大于8mg/100ml,尿酸钾盐或钠盐沉积于软组织、软骨及关节等处,形成尿酸结石及关节炎,沉积于肾脏为肾结石,基本特征为高尿酸血症。

引起血尿酸升高的原因:疾病引起体内嘌呤类物质大量分解;肾脏疾病使尿酸排出受阻;长期摄入富含核酸的食物,甜面包,肝,酵母,沙丁鱼等。

药物:别嘌呤醇别嘌呤醇结构与次黄嘌呤相似,对黄嘌呤氧化酶有很强的抑制作用,与酶活性中心Mo(IV)牢固结合,自杀底物,成为酶的灭活物,经别嘌呤醇治疗的患者排泄黄嘌呤和次黄嘌呤以代替尿酸。

⏹⒊尿酸降解途径因物种存在差异⏹灵长类,鸟类,爬行类动物尿酸⏹哺乳类(除灵长类),腹足类尿囊素⏹硬骨鱼尿囊酸⏹大多数鱼类,两栖类尿素⏹甲壳类,咸水瓣鳃类氨⏹植物多种产物㈡. 嘧啶碱⏹核苷酸分解产物嘧啶碱可以在生物体内进一步被分解,不同种类生物对嘧啶分解过程也不完全相同,一般具有氨基的嘧啶需先水解脱氨。

胞嘧啶脱氨酶尿嘧啶二氢尿嘧啶脱氢酶二氢尿嘧啶开环β-脲基丙氨酸NH3+ CO2 +β-丙氨酸胸腺嘧啶分解与尿嘧啶相似胸腺嘧啶二氢胸腺嘧啶β-尿基异丁酸NH3 + CO2+ β- 氨基异丁酸㈠. 嘌呤核糖核苷酸的合成5-磷酸核糖焦磷酸开始逐步合成次黄嘌呤核苷酸转变为腺嘌呤核糖核苷酸和鸟嘌呤核糖核苷酸。

三. 核苷酸的生物合成⏹1.次黄嘌呤核苷酸的生成.⏹次黄嘌呤核苷酸的酶促合成过程,主要是以鸽肝的酶系统为材料研究清楚的。

以后在其他动物、植物、微生物中也找到类似的酶和中间产物,由此可以推测它们的合成过程也大致相同,⏹.次黄嘌呤核苷酸的合成首先需要由5-磷酸核糖焦磷酸供给核苷酸的磷酸核糖部分,在其上再完成嘌呤环的装配。

⏹核糖-5-P +ATP 磷酸核糖焦磷酸激酶5-P-核糖焦磷酸+ AMP次黄嘌呤核苷酸的合成过程共有十步反应,分成二个阶段。

第一阶段:5-氨基咪唑核苷酸的合成⏹(1)5-磷酸核糖焦磷酸+ 谷氨酰胺转酰胺酶5-磷酸核糖胺+谷氨酸+PPi⏹(2) 5-磷酸核糖胺+ 甘氨酸+ ATP 合成酶甘氨酰胺核苷酸+ADP +Pi⏹(3) 甘氨酰胺核苷酸+N10-甲酰四氢叶酸+水转甲酰基酶甲酰甘氨酰胺核苷酸+四氢叶酸⏹(4)甲酰甘氨酰胺核苷酸+谷氨酰胺+ATP+水合成酶甲酰甘氨脒核苷酸+谷氨酸+ADP+Pi⏹(5)甲酰甘氨脒核苷酸+A TP 合成酶⏹5-氨基咪唑核苷酸+ ADP +Pi第二阶段:形成次黄嘌呤核苷酸⏹(6)5-氨基咪唑核苷酸+ CO2羧化酶5-氨基咪唑-4-羧酸核苷酸⏹(7) 5-氨基咪唑-4-羧酸核苷酸+天冬氨酸+ATP 合成酶5-氨基咪唑-4-(N-琥珀基)氨甲酰核苷酸⏹(8) 5-氨基咪唑-4 -(N-琥珀基)氨甲酰核苷酸裂解酶5-氨基咪唑-4-氨甲酰核苷酸+延胡索酸⏹(9) 5-氨基咪唑-4-氨甲酰核苷酸⏹+ N 10 -甲酰四氢叶酸转甲酰基酶5-甲酰氨基咪唑-4-氨甲酰核苷酸+ 四氢叶酸⏹(10) 5-甲酰氨基咪唑-4-氨甲酰核苷酸合酶次黄嘌呤核苷酸+水⏹脱水环化掌握嘌呤环元素的来源⏹3. 嘌呤碱和核苷合成核糖核苷酸⏹生物体内除以简单前体物质“从头合成”核苷酸外,可由碱基和核苷合成核苷酸,“补救途径”。

⏹主要的补救途径:⏹嘌呤碱与5-磷酸核糖焦磷酸在磷酸核糖转移酶催化作用下形成嘌呤核苷酸⏹腺嘌呤+5-磷酸核糖焦磷酸⏹腺嘌呤核苷酸+PPi⏹次黄嘌呤+5-磷酸核糖焦磷酸⏹次黄嘌呤核苷酸+PPi⏹鸟嘌呤+5-磷酸核糖焦磷酸⏹鸟嘌呤核苷酸+PPi⏹人类该途径具重要的作用,大脑中腺嘌呤和次黄嘌呤核苷酸合成主要依赖该途径。

⏹⒋嘌呤核糖核苷酸生物合成的调节⏹AMP ,GMP ,IMP反馈抑制磷酸核糖焦磷酸转酰氨酶活性。

⏹AMP ,GMP分别反馈抑制从IMP开始的分支部位的酶。

㈡. 嘧啶核糖核苷酸的合成⏹嘧啶核苷酸与嘌呤核苷酸合成不同。

⏹先合成嘧啶环。

⏹嘧啶环+磷酸核糖乳氢苷酸尿嘧啶核苷酸⏹⒈尿嘧啶核苷酸的生物合成⏹(1)氨甲酰磷酸的形成⏹Gln+2ATP+HCO3-合成酶氨甲酰磷酸+2ADP+Pi+Glu⏹(2)氨甲酰磷酸+Asp转氨甲酰酶⏹氨甲酰天冬氨酸+ Pi⏹(3 )氨甲酰天冬氨酸二氢乳清酸酶二氢乳清酸+H2O⏹(4)二氢乳清酸+NAD+ 二氢乳清酸脱氢酶乳清酸+ NADH + H+⏹(5)乳清酸+ 5-磷酸核糖焦磷酸焦磷酸化酶⏹乳清苷酸尿嘧啶核苷酸嘧啶核糖核苷酸的合成⏹⒉胞嘧啶核糖核苷酸的合成⏹尿嘧啶核苷酸转变为胞嘧啶核苷酸在尿嘧啶核苷三磷酸水平上进行.⏹UMP+ATP 尿嘧啶核苷酸激酶UDP+ADP⏹UDP+A TP 核苷二磷酸激酶UTP+ADP⏹UTP+ 谷氨酰胺+ ATP +H2O CTP合成酶CTP+谷氨酸+ ADP+ Pi⏹细菌直接利用氨合成胞嘧啶核苷三磷酸,动物组织由Glu供给氨基。

⏹3、嘧啶碱和核苷合成核糖核苷酸—补救途径⏹生物体利用外源或分解代谢中产生的嘧啶碱、核苷或嘧啶核苷合成嘧啶核苷酸。

⏹尿嘧啶核苷酸:⏹(1)UMP磷酸核糖转移酶催化生成尿嘧啶核苷酸⏹U+5-磷酸核糖焦磷酸UMP磷酸核糖转移酶⏹尿嘧啶核苷酸+PPi⏹(2)尿苷磷酸化酶和尿苷激酶催化形成尿嘧啶核苷酸⏹U+1-磷酸核糖尿苷磷酸化酶⏹尿嘧啶核苷+Pi⏹尿嘧啶核苷+ATP 尿苷激酶⏹尿嘧啶核苷酸+ADP⏹胞嘧啶核苷酸⏹胞嘧啶不能直接与5-磷酸核糖焦磷酸生成胞嘧啶核苷酸⏹胞嘧啶核苷+ATP 尿苷激酶胞嘧啶核苷酸+ADP⏹⒋嘧啶核糖核苷酸合成的调节⏹反馈抑制⏹氨甲酰磷酸合成酶UMP⏹天冬氨酸转氨甲酰酶CTP⏹CTP合酶⏹⏹㈢脱氧核糖核苷酸的合成⏹⒈核糖核苷酸还原⏹核糖核苷酸还原酶⏹核糖核苷酸还原为脱氧核糖核苷酸,多在二磷酸核糖核苷酸水平上进行。

⒊利用已有碱基和戊糖合成⏹(1)碱基+脱氧核糖-1-P 核苷磷酸化酶⏹脱氧核糖核苷⏹(2)脱氧核糖核苷+ATP 脱氧核糖核苷激酶⏹脱氧核糖核苷酸(3)碱基间互换合成新的脱氧核苷酸⏹dXDP + dYTP 核苷二磷酸激酶dXTP + dYDP第二节DNA的复制⏹DNA生物合成概述:⏹核酸的生物合成是模板指导下进行的,模板有DNA 和RNA. 因此, DNA合成分为DNA为模板的DNA复制和RNA为模板的逆转录。

⏹DNA合成主要原料:四种脱氧核苷三磷酸,酶系和辅助因子的参与。

⏹本章主要讲解DNA复制:以原来DNA分子为模板合成出具有相同分子的过程。

⏹自我复制⏹一、DNA的半保留复制⏹以双链DNA 分子的每一条链为模板,按照碱基配对的原则,合成出两个与原DNA分子碱基顺序完全一样的新DNA分子,其中每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式为半保留复制。

⏹1963年,Cairns 用放射自显影的方法观察到完整的正在复制的大肠杆菌染色体DNA⏹二. DNA的半不连续复制⏹复制叉:复制开始,两条链解开,形成的叉形结构。

⏹随着复制叉的延伸,DNA的两条母链分别合成与其互补的子链,目前分离到的催化DNA形成的聚合酶的合成方向都是5’→3’,DNA在复制时如何同时作为模板合成其互补链?⏹半不连续复制:DNA合成的一种模式,以两条亲本链为模板合成子链时,一条子链的合成是连续的,另一条是不连续。

⏹先导链、后滞链:DNA双链复制时,一条子链沿5’→3’方向连续合成,即前导链,而另一条链的合成是不连续的,即后滞链。

⏹冈崎片段:后滞链合成时,先以亲本链为模板按5’→3’方向合成许多1kb-2kb的不连续片段,这些片段称为冈崎片段,然后这些短片段共价连接成一条完整的后滞链,后滞链的成长方向与其片段的饿合成方向相反。

DNA 复制是半不连续复制Okazaki实验证实DNA 复制是半不连续复制•前导链(leading strand)•滞后链(trailing strand or lagging strand)•冈崎片段(okazaki fragment三. DNA复制有关的酶和蛋白质⏹ 1. DNA聚合酶⏹DNA的复制、校对和修复.⏹1956年Kornberg从大肠杆菌中发现DNA聚合酶,其他生物找到该种类型的酶.⏹在有模板和Mg2+存在下,催化四种脱氧核糖核苷三磷酸合成DNA.⏹DNA聚合酶只能催化dNTP加到已有核酸链的游离3-羟基上,合成需要引物链存在,合成需要模板指导,合成的DNA链只与模板有关,与底物比例无关.⏹催化方向为5’ 3’小结:DNA 聚合酶的特性⏹A、底物必须是dNTP.⏹B、以DNA为模板,链延伸功能,不能从头合成,需要引物。

⏹C、合成方向只能从5’ 3’.大肠杆菌DNA聚合酶⏹大肠杆菌有多种DNA聚合酶,其中只有聚合酶III是DNA复制必需,作用是随复制叉移动延长新生链;⏹聚合酶I主要是添补后滞链的间隙及负责损伤DNA的修复等功能;⏹DNA聚合酶I具有5‘→3’方向核酸外切酶活性,能切除引物RNA⏹DNA聚合酶I⏹单链多肽,103kD, 400个/细胞.⏹三个活性中心:⏹DNA聚合酶活力,1000bp/min;3’→5’:核酸外切酶活力,校对.5’→3’:核酸外切酶活力,修复、引物链去除.⏹用蛋白酶将DNA聚合酶作有限水解,得到两个片段,大片段具有聚合酶和3’→5’核酸外切酶活力,小片段具有5’→3’核酸外切酶活力.⏹聚合酶I合成速度太慢,复制叉移动速度的1/20;持续合成能力差,合成50bp与模板分离.⏹遗传分析,缺陷型DNA复制基本正常.⏹不是主要的复制酶,修复酶.⏹DNA聚合酶II⏹多亚基酶,聚合活力较DNA聚合酶I稍高,需带缺口的双链DNA作为模板-引物,无5’→3’外切酶活性,100个/细胞.⏹小缺口〈100 核苷酸⏹功能:可能在DNA的修复中起重要作用.⏹DNA聚合酶III⏹多亚基组成,催化聚合速度高,10-20个/细胞。

相关主题