当前位置:文档之家› 微专题22 人造卫星运行规律分析

微专题22 人造卫星运行规律分析

[方法点拨] (1)由v =GMr得出的速度是卫星在圆形轨道上运行时的速度,而发射航天器的发射速度要符合三个宇宙速度.(2)做圆周运动的卫星的向心力由地球对它的万有引力提供,并指向它们轨道的圆心——地心.(3)在赤道上随地球自转的物体不是卫星,它随地球自转所需向心力由万有引力和地面支持力的合力提供.1.(运行基本规律)人造地球卫星在绕地球做圆周运动的过程中,下列说法中正确的是( ) A .卫星离地球越远,角速度越大B .同一圆轨道上运行的两颗卫星,线速度大小一定相同C .一切地球卫星运行的瞬时速度都大于7.9 km/sD .地球同步卫星可以在以地心为圆心、离地高度为固定值的一切圆轨道上运动2.(同步卫星运行规律)某卫星绕地球做匀速圆周运动的周期为12 h .该卫星与地球同步卫星比较,下列说法正确的是( ) A .线速度之比为34∶1 B .向心加速度之比为4∶1 C .轨道半径之比为1∶34 D .角速度之比为1∶23.(卫星运行参量分析)暗物质是二十一世纪物理学之谜,对该问题的研究可能带来一场物理学的革命.为了探测暗物质,我国在2015年12月17日成功发射了一颗被命名为“悟空”的暗物质探测卫星.已知“悟空”在低于同步卫星的轨道上绕地球做匀速圆周运动,经过时间t (t 小于其运动周期),运动的弧长为s ,与地球中心连线扫过的角度为β(弧度),引力常量为G ,则下列说法中正确的是( )A .“悟空”的线速度大于第一宇宙速度B .“悟空”的向心加速度小于地球同步卫星的向心加速度C .“悟空”的环绕周期为2πt βD .“悟空”的质量为s 3Gt 2β4.(卫星与地面物体比较)“静止”在赤道上空的地球同步气象卫星把广阔视野内的气象数据发回地面,为天气预报提供准确、全面和及时的气象资料.设地球同步卫星的轨道半径是地球半径的n 倍,下列说法中正确的是( )A .同步卫星的向心加速度是地球表面重力加速度的1n 倍B .同步卫星的向心加速度是地球表面重力加速度的1n倍 C .同步卫星运行速度是近地卫星运行速度的1n 倍D .同步卫星运行速度是近地卫星运行速度的1n倍5.一颗人造卫星在如图1所示的轨道上绕地球做匀速圆周运动,其运行周期为4.8小时.某时刻卫星正好经过赤道上A 点正上方,则下列说法正确的是( )A .该卫星和同步卫星的轨道半径之比为1∶5 图1B .该卫星和同步卫星的运行速度之比为1∶35C .由题中条件和引力常量可求出该卫星的轨道半径D .该时刻后的一昼夜时间内,卫星经过A 点正上方2次6.(多选)假设地球同步卫星绕地球运行的轨道半径是地球半径的6.6倍,地球赤道平面与地球公转平面共面.站在地球赤道某地的人,日落后4小时的时候,在自己头顶正上方观察到一颗恰好由阳光照亮的人造地球卫星,若该卫星在赤道所在平面内做匀速圆周运动.则此人造卫星( )A .距地面高度等于地球半径B .绕地球运行的周期约为4小时C .绕地球运行的角速度与同步卫星绕地球运行的角速度相同D .绕地球运行的速率约为同步卫星绕地球运行速率的1.8倍7.(多选)欧洲航天局(ESA)计划于2022年发射一颗专门用来研究光合作用的卫星“荧光探测器”.已知地球的半径为R ,引力常量为G ,假设这颗卫星在距地球表面高度为h (h <R )的轨道上做匀速圆周运动,运行的周期为T ,则下列说法中正确的是( )A .该卫星正常运行时一定处于赤道正上方B .该卫星一昼夜围绕地球运动一周C .该卫星运行时的向心加速度为4π2(R +h )T 2D .地球质量为4π2(R +h )3GT 28.如图2,地球半径为R ,A 为地球赤道表面上一点,B 为距地球表面高度等于R 的一颗卫星,其轨道与赤道在同一平面内,运行方向与地球自转方向相同,运动周期为T ,C 为同步卫星,离地高度大约为5.6R ,已知地球的自转周期为T 0,以下说法正确的是( )图2A .卫星B 的周期T 等于T 03.3B .地面上A 处的观察者能够连续观测卫星B 的时间为T3C .卫星B 一昼夜经过A 的正上方的次数为T 0T 0-TD .B 、C 两颗卫星连续两次相距最近的时间间隔为T 0TT 0-T图39.如图3为高分一号与北斗导航系统两颗卫星在空中某一面内运动的示意图.导航卫星G 1和G 2以及高分一号均可认为绕地心O 做匀速圆周运动.卫星G 1和G 2的轨道半径为r ,某时刻两颗导航卫星分别位于轨道上的A 、B 两位置,高分一号在C 位置.若卫星均顺时针运行,∠AOB =60°,地球表面处的重力加速度为g ,地球半径为R ,不计卫星间的相互作用力.则下列说法正确的是( )A .若高分一号与卫星G 1的周期之比为1∶k (k >1,且为整数),则从图示位置开始,在卫星G 1运动一周的过程中二者距离最近的次数为kB .卫星G 1和G 2的加速度大小相等且为RrgC .若高分一号与卫星G 1的质量相等,由于高分一号的绕行速度大,则发射所需的最小能量更多D .卫星G 1由位置A 运动到位置B 所需的时间为πr3Rr g10.据英国《每日邮报》报道,科学家发现了一颗距离地球仅14光年的“另一个地球”——沃尔夫(Wolf)1061c.沃尔夫1061c 的质量为地球的4倍,围绕红矮星沃尔夫1061运行的周期为5天,它是迄今为止在太阳系外发现的距离最近的宜居星球.设想从地球发射一颗科学探测卫星围绕沃尔夫1061c 表面运行.已知万有引力常量为G ,天体的环绕运动可看做匀速圆周运动.则下列说法正确的是( )A .从地球发射该卫星的速度应该小于第三宇宙速度B .卫星绕行星沃尔夫1061c 运行的周期与该卫星的密度有关C .沃尔夫1061c 和地球公转轨道半径的三次方之比等于(5365)2D .若已知探测卫星的周期和地球的质量,可近似求出沃尔夫1061c 的半径11.北斗卫星导航系统是我国自行研制的全球卫星导航系统,是继美国全球定位系统、俄罗斯格洛纳斯卫星导航系统之后第三个成熟的卫星导航系统.北斗卫星导航系统中某些导航卫星是地球同步卫星,位于3.6万公里的(约为地球半径的6倍)高空,地球表面的重力加速度为g =10 m/s 2,则下列关于该类导航卫星的描述正确的是( ) A .该类导航卫星运行时会经过北京正上空 B .该类导航卫星内的设备不受重力作用C .该类导航卫星的线速度一定介于第一宇宙速度和第二宇宙速度之间D .该类导航卫星运行的向心加速度约为0.2 m/s 212.如图4所示,质量分别为m 和2m 的甲、乙两颗卫星以相等的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动,不考虑其他天体的影响,则两颗卫星( )图4A .所受的万有引力大小之比为1∶2B .运动的向心加速度大小之比为1∶2C .动能之比为1∶2D.运动的角速度大小之比为1∶213.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍,某时刻,航天站使登月器减速分离,登月器沿如图5所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回,当第一次回到分离点时恰与航天站对接,登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g0,月球半径为R,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为() 图5A.4.7πRg0B.4.7πg0RC.1.7πRg0D.1.7πg0R14.我国探月计划分成“绕、落、回”三部分.若已知地球和月球的半径之比为a∶1,地球表面的重力加速度和月球表面的重力加速度之比为b∶1,以下说法正确的是()A.在地球和月球之间的某处飞船受到的地球和月球的引力大小相等,此处距地球和月球的距离之比为a∶bB.飞船绕地球表面飞行和绕月球表面飞行的周期之比为ab∶1C.地球与月球的第一宇宙速度之比为a∶bD.地球与月球的质量之比为a2b∶1答案精析1.B [卫星绕地球做圆周运动,由万有引力提供向心力可知,G Mm(R +h )2=mω2(R +h ),解得ω=GM (R +h )3.卫星离地球越远,角速度越小,选项A 错误;由G Mmr 2=m v 2r ,解得v = GMr,同一圆轨道上(r 相等)运行的两颗卫星,线速度大小一定相同,选项B 正确;当卫星近地面运行时,其线速度等于7.9 km /s ,随着轨道半径的增大,其线速度减小,所以一切地球卫星运行的瞬时速度都小于7.9 km/s ,选项C 错误;地球同步卫星必须在赤道平面内离地高度为固定值的轨道上运动,选项D 错误.]2.C [地球同步卫星的周期为24 h ,该卫星的周期与地球同步卫星的周期之比为T 1T 2=12.由万有引力定律和牛顿运动定律得G Mm r 2=mr (2πT )2,可得r = 3GMT 24π2,则该卫星的轨道半径与地球同步卫星的轨道半径之比为r 1r 2=3T 21T 22=1∶34,选项C 正确;由G Mm r 2=ma ,可得a =GM r 2,则该卫星的向心加速度与地球同步卫星的向心加速度之比为a 1a 2=r 22r 21=232∶1,选项B 错误;由G Mmr =m v 2r ,可得v =GMr 则该卫星的线速度与地球同步卫星的线速度之比为v 1v 2=r 2r 1=32∶1,选项A 错误;由角速度与周期的关系ω=2πT 可得,该卫星的角速度与地球同步卫星的角速度之比为2∶1,选项D 错误.]3.C [第一宇宙速度为最大的环绕速度,则“悟空”的线速度不会大于第一宇宙速度,A 项错误;据万有引力提供向心力得a =GMr 2,半径小的加速度大,则“悟空”的向心加速度大于地球同步卫星的向心加速度,B 项错误;运动的角速度为ω=βt ,则周期T =2πω=2πtβ,C 项正确;“悟空”为绕行天体无法测量其质量,D 项错误.]4.D [设地球的质量、半径分别为M 、R ,同步卫星的绕行轨道半径为r ,则同步卫星的加速度a 1=GM r 2,地球表面的重力加速度为a 2=GM R 2,则两个加速度之比为1n2,A 、B 项错误;同步卫星绕行的速度为v 1= GMr,近地卫星的绕行速度为v 2= GMR,所以同步卫星和近地卫星的绕行速度之比为1n,C 项错误,D 项正确.] 5.D [同步卫星的运行周期为24小时,该卫星与同步卫星的周期之比为1∶5,由开普勒第三定律得T 21∶T 22=r 31∶r 32,得r 1∶r 2=1∶325,A 选项错误;由v =2πr T ,得v 1∶v 2=35∶1,B 选项错误;由GMm r 2=m (2πT )2r 可知,要求得卫星的轨道半径,还需要已知地球质量,C 选项错误;该卫星经过12小时,运动2.5圈,A 点转到与初始位置关于地球球心中心对称位置,处于卫星正下方,卫星经过24小时,运动5圈运动到初始位置,卫星一昼夜经过A 点正上方2次,D 选项正确.]6.ABD [画出站在地球赤道某地的人观察到该卫星的示意图,由图可知,此人造卫星距地面高度等于地球半径R ,选项A 正确;对于地球同步卫星和此人造卫星,由开普勒第三定律得(6.6R )3(24 h )2=(2R )3T 2,解得T ≈4 h ,选项B 正确;由ω=2πT 可知,此人造卫星绕地球运行的角速度是同步卫星绕地球运行的角速度的6倍,选项C 错误;由G Mmr 2=m v 2r 解得v =GMr,此人造卫星绕地球运行速率与同步卫星绕地球运行速率的比值为GM2R∶GM6.6R= 6.62≈1.8,即此人造卫星绕地球运行速率约为同步卫星绕地球运行速率的1.8倍,选项D 正确.]7.CD [该卫星不是地球的同步卫星,不一定在赤道正上方,A 、B 错误;该卫星运行时的向心加速度为a =ω2(R +h )=4π2(R +h )T 2,C 正确;由G Mm(R +h )2=ma =m 4π2(R +h )T 2,知M =4π2(R +h )3GT 2,D 正确.]8.D [对B 、C 应用开普勒第三定律有(6.6R )3T 20=(2R )3T 2,求得T ≈16T 0,A 错误;过A 点作地球的切线,交卫星B 的运行轨迹于M 、N 点,由几何关系知由M 至N 卫星B 运动的时间为T 3,但是地球还在自转,故A 处的观察者能够连续观测卫星B 的时间大于T3,B 错误;设每经t时间B 就会经过A 正上方一次,则有2πT t -2πT 0t =2π,那么一昼夜即T 0时间内卫星B 经过A 的正上方的次数为n =T 0t ,解得n =T 0-T T,C 错误;经过t 时间B 经过A 的正上方,也就是C通过B 的正上方,所以B 、C 连续两次相距最近的时间间隔为t =TT 0T 0-T ,D 正确.]9.D [在卫星G 1转动一周过程中,高分一号转动k 周,二者距离最远的次数为k -1,二者距离最近的次数为k -1,则A 错误;卫星G 1和G 2在同一轨道上,故加速度大小相等,根据G Mm r 2=ma 及G Mm 0R 2=m 0g 可知a =R 2r 2g ,B 错误;虽然高分一号的绕行速度大,但在发射过程中还需要克服引力做功,由于卫星G 1的高度较高,需要获得的引力势能更大,因此卫星G 1发射所需的最小能量更多,C 错误;根据万有引力提供向心力G Mm r 2=mω2r ,得ω=GMr 3=gR 2r 3=R rgr ,卫星G 1由位置A 运动到位置B 所需的时间t =π3ω=πr 3Rrg,故D 正确.] 10.D [从地球发射一颗科学探测卫星围绕沃尔夫1061c 表面运行,发射的速度应大于第三宇宙速度,A 项错误;根据G Mm r 2=mr 4π2T2知,T =4π2r 3GM与卫星的密度无关,B 项错误;沃尔夫1061c 和地球围绕的中心天体不同,不能根据开普勒第三定律求解轨道半径的三次方,可知公转半径的三次方之比不等于(5365)2,C 项错误;已知地球的质量,可以得知沃尔夫1061c的质量,根据G Mm r 2=mr 4π2T2可以求出沃尔夫1061c 的半径,D 项正确.]11.D [该类导航卫星运行的轨道平面与赤道平面重合,不可能经过北京正上方,A 错误;该类导航卫星内的设备处于完全失重状态,依然受重力作用,B 错误;由v =GMr可知,该类导航卫星的运行速度小于第一宇宙速度,C 错误;由a =GMr 2,GM =R 2g 可知,该类导航卫星的向心加速度a =R 2r2g ≈0.2 m /s 2,D 正确.]12.B [由万有引力定律,卫星甲所受的万有引力F 甲=G Mmr 2,卫星乙所受的万有引力F 乙=G 2M ·2m r 2=4G Mm r 2,即它们所受的万有引力大小之比为1∶4,A 错误;由G Mm r 2=ma 甲,4G Mm r 2=2ma 乙,可知它们运动的向心加速度大小之比为1∶2,B 正确;由G Mm r 2=m v 21r可知,甲卫星的动能为12m v 21=GMm 2r ,同理,乙卫星的动能为12×2m v 22=2GMmr ,动能之比为1∶4,C 错误;由v =ωr 可知,它们运动的角速度大小之比为ω1∶ω2=v 1∶v 2=GMr ∶2GMr=1∶2,D 错误.]13.A [设航天站绕月的周期为T 1,由牛顿第二定律,有G Mm 1(3R )2=m 1(3R )(2πT 1)2.设登月器做椭圆运动的周期为T 2,由开普勒第三定律,有(3R )3T 21=(2R )3T 22.对月球表面的任意一个物体,有mg 0=G MmR 2.由以上三式,解得T 1=6π3Rg 0,T 2=4π2Rg 0,最短时间t =T 1-T 2≈4.7πRg 0,选项A 正确.]14.D [在地球和月球之间的某处飞船受到的地球和月球的引力大小相等,由万有引力定律F =G Mm r 2及GM =gR 2,可得F =gR 2m r 2,即g 1R 21m r 21=g 2R 22m r 22,解得此处距离地球和月球的距离之比为r 1r 2=R 1R 2·g 1g 2=a b ∶1,选项A 错误;飞船绕地球表面飞行和绕月球表面飞行,由mg =mR (2πT)2,可得T =2πR g ,解得飞行的周期之比为T 1T 2= g 2R 1g 1R 2=a ∶b ,选项B 错误;由第一宇宙速度公式v =gR ,可得地球与月球的第一宇宙速度之比为v 1v 2=g 1R 1g 2R 2=ab ∶1,选项C 错误;由GM =gR 2,可得地球与月球的质量之比为M 1M 2=R 21R 22·g 1g 2=a 2b ∶1,选项D 正确.]。

相关主题