热学复习大纲ααααβ3 )(1 )(1 )(1 )(1 ====-=V p VV pp T T dT dll dT dpp dTdVV dP dV V K 通常线膨胀系数压强系数体膨胀系数等温压缩系数 热力学第零定律:在不受外界影响的情况下,只要A 和B 同时与C 处于热平衡,即使A 和B 没有接触,它们仍然处于热平衡状态,这种规律被称为热力学第零定律。
为单位体积内的数密度恒量理想气体物态方程n K J N Rk mN M Nm M K mol J T V p R nkT p RT M M RT pV T pV A A m m/1038.1,/31.823000-⨯===⋅==⎪⎪⎪⎭⎪⎪⎪⎬⎫====νmol N A /1002.623个⨯=理想气体微观模型1、分子本身线度比起分子间距小得多而可忽略不计mN M n r mm n L m m n Am 1031319312531032533230104.2)43()43(103.3)107.21()1(:107.2104.221002.6:-----⨯===⨯=⨯==⨯=⨯⨯=πρπ氢分子半径距离标准状态下分子间平均洛喜密脱常数2、除碰撞一瞬间外,分子间互作用力可忽略不计。
分子在两次碰撞之间作自由的匀速直线运动;3、处于平衡态的理想气体,分子之间及分子与器壁间的碰撞是完全弹性碰撞;4、分子的运动遵从经典力学的规律:在常温下,压强在数个大气压以下的气体,一般都能很好地满足理想气体方程。
处于平衡态的气体均具有分子混沌性单位时间内碰在单位面积器壁上的平均分子数6n t v A N A t ⋅∆⋅∆=∆∆∆数面积器壁上的平均分子时间内碰在 46vn vn t A N =Γ=∆∆∆=Γ得到以后可用较严密的方法器壁上的平均分子数单位时间碰在单位面积压强的物理意义分子平均平动动能2k 21v m =ε 为玻尔兹曼常数一种形式理想气体物态方程的另k K J N R k nkTp A,1038.1123--⋅⨯=== 温度的微观意义 kT v m t 23212==ε 绝对温度是分子热运动剧烈程度的度量是分子杂乱无章热运动的平均平动动能,它不包括整体定向运动动能。
粒子的平均热运动动能与粒子质量无关,而仅与温度有关 气体分子的均方根速率mrms M RTmkTv v 332=== 范德瓦耳斯方程1、分子固有体积修正bV RTp p RT b V m m -==-或 2、分子吸引力修正bV RT p p mol RT b V p p p p m i m i -=∆+=-=∆+)1()(气体考虑内内k v n kp i ∆⨯=∆⨯=∆2612][面积上平均分子数单位时间内碰撞在单位22)3()(31,m m A i V aK v V N Kn v n p Kn k =⋅⋅=⋅=∆∴=∆ΘRT M m b M m V V a M m p V m mol RT b V V ap mm m m m=-⋅+=-+])()][()([:,,)1(,))((:222则范氏方程为体积为若气体质量为范氏气体范德瓦耳斯方程平均值运算法则设)(u f 是随机变量u 的函数, 则)()()()(u g u f u g u f +=+ 若c 为常数,则 )()(u f c u cf =若随机变量u 和随机变量v 相互统计独立。
又)(u f 是u 的某一函数,)(v g 是v 的另一函数,则 )()()()(v g u f v g u f ⋅=⋅ 应该注意到,以上讨论的各种概率都是归一化的,即11==∑=i ni P随机变量会偏离平均值 ,即u u u i i +=∆ 一般其偏离值的平均值为零,但均方偏差不为零。
2222222)()(2)(2)(u u u u u u u u u u u -=+⋅-=+-=∆0)(2≥∆u 22)(u u ≥ 定义相对均方根偏差()[]rms u u u u u )(212212∆=∆=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛∆当u 所有值都等于相同值时,0)(=∆rms u可见相对均方根偏差表示了随机变量在平均值附近分散开的程度,也称为涨落、散度或散差。
气体分子的速率分布律:处于一定温度下的气体,分布在速率v 附近的单位速率间隔内的分子数占总分子数的百分比只是速率v 的函数,称为速率分布函数。
NdvdNv f =)( 理解分布函数的几个要点:1.条件:一定温度(平衡态)和确定的气体系统,T 和m 是一定的;2.范围:(速率v 附近的)单位速率间隔,所以要除以dv ;3.数学形式:(分子数的)比例,局域分子数与总分子数之比。
物理意义:速率在v 附近,单位速率区间的分子数占总分子数的概率,或概率密度。
NdNdv v f =)(表示速率分布在dv v v +→内的分子数占总分子数的概率; ⎰21)(vvdv v f N dN =表示速率分布在21v v →内的分子数占总分子数的概率; ()100==⎰⎰∞dv v f NdNN(归一化条件) 麦克斯韦速率分布律1.速率在dv v v +→区间的分子数,占总分子数的百分比dv v e kT m N dN kT mv2223224⋅⎪⎭⎫ ⎝⎛=-ππ 2.平衡态——麦克斯韦速率分布函数()2223224v ekT m v f kTmv ⋅⎪⎭⎫⎝⎛=-ππmkTM RT mkT v p 41.122 ≈==最概然速率 气体在一定温度下分布在最概然速率p v 附近单位速率间隔内的相对分子数最多。
↑=↑mkTv T p 2 ↓=↑mkTv m p 2 ⎰∞=≈==0)(60.188 dv v vf m kTM RT m kT v πππ平均速率dv v f v M RTmkTv v rms )(33 022⎰∞====方均根速率 重力场中粒子按高度分布:重力场中,气体分子作非均匀分布,分子数随高度按指数减小。
kTmgh RTghM ep ep p m --==00 nkT p = kT n p 00=kTmgh en n -=0 取对数pp g M RTh m 0ln =测定大气压随高度的减小,可判断上升的高度玻尔兹曼分布律:若分子在力场中运动,在麦克斯韦分布律的指数项即包含分子的动能,还应包含势能。
p k εεε+=当系统在力场中处于平衡状态时,其坐标介于区间dz z z dy y y dx x x +→+→+→速度介于z z z y y y x x x dv v v dv v v dv v v +→+→+→ 内的分子数为:dxdydz dv dv dv ekT m n dN z y x kTp k εεπ+-⎪⎭⎫ ⎝⎛=2302上式称为玻尔兹曼分子按能量分布律0n 表示在势能p ε为零处单位体积内具有各种速度的分子总数.上式对所有可能的速度积分1223=⎪⎭⎫ ⎝⎛-∞∞-⎰z y x kTdv dv dv e kT m kεπ 理想气体的热容1.热容:系统从外界吸收热量dQ ,使系统温度升高dT ,则系统的热容量为dTdQC =2.摩尔热容 dTdQCC m νν1==每mol 物质 3.比热容 dTdQ m m C c 1==单位质量物质 4.定压摩尔热容量 p m p dT dQ C )(1,ν=5.定容摩尔热容量 V m V dTdQ C )(1,ν= 理想气体的内能RT i U R kN kT i N U A k A k 22νενε=⎪⎪⎭⎪⎪⎬⎫==⋅⋅= ⎪⎩⎪⎨⎧=== 2 R kN kT i E RT 2i U A K 动能内能理想气体ν (理想气体的内能是温度的单值函数)气体的迁移现象系统各部分的物理性质,如流速、温度或密度不均匀时,系统处于非平衡态。
(输运过程) 牛顿黏性定律 速度梯度y u u y u ∆-=∆∆12 yd ud y u y =∆∆→∆0lim粘滞定律 A dyduf ⋅⋅-=η η为粘度(粘性系数) 粘度η与流体本身性质有关⎩⎨⎧↑↓↑ηη 气体液体温度 A y vf η= 满足00==v y 处的流体叫牛顿流体 切向动量流密度为动量流动量流密度dtdpA dt dp J p ,/:=A J dtdpf p ⋅==Θ dz du J p η-=∴⎪⎩⎪⎨⎧如沥青等弹性物质复作用,对形变具有部分弹性恢如:油漆等凝胶物质变的,其粘性系数会随时间而如血液、泥浆等数关系,的粘性力间不呈线性函其速度梯度与互相垂直非牛顿流体 泊萧叶定律 体积流率V Q dtdV=:单位时间内流过管道截面上的流体体积。
最大时u r 0= ,0→→v R r压力差:221)(r p p π- 粘滞阻力drdu rLf πη2= 定常流动 Lr p p dr du η2)(21-=-dr r Lp p u d Rru⎰⎰-=-η2210)(4)(2221r R Lp p r u --=η rdr r R Lp p rdr r u dS r u Q R v )(2)(2)()(d 20221--===⎰ηππ 4218R Lp p Q dt dV v ηπ-== 对水平直圆管有如下关系:Lp r dt dV ηπ84∆=叫泊萧叶定律 菲克定律:dzdnDJ N -= 在一维(如z 方向扩散的)粒子流密度N J 与粒子数密度梯度dz dn 成正比。
式中负号表示粒子向粒子数密度减少的方向扩散,若与扩散方向垂直的流体截面上的N J 处处相等,则:N J 乘分子质量与截面面积,即可得到单位时间扩散总质量。
傅立叶定律:热流•Q (单位时间内通过的热量)与温度梯度dzdT及横截面积A 成正比 则A dzdTQ ⋅⋅-=•κ 其中比例系数κ称为热导系数,其单位为11--⋅⋅K m W ,负号表示热量从温度较高处流向温度较低处若设热流密度为T J ,则:dzdT J T ⋅-=κ 热欧姆定律把温度差T ∆称为“温压差”(以T U ∆-表示,其下角T 表示“热”,下同),把热流•Q 以T I 表示, 则可把一根长为L 、截面积为A 的均匀棒达到稳态传热时的傅里叶定律改写为T T T T T T I R I κALΔU A L ΔU κI ==⋅=或 其中ALρκA L R T T ==而κρT 1=称为热阻率牛顿冷却定律对固体热源,当它与周围媒体的温度差不太大时, 单位时间内热源向周围传递的热量Q 为:)(0T T hA Q -=•0T 为环境温度,T 为热源温度,A 为热源表面积,h 为热适应系数。
平均碰撞频率Z一个分子单位时间内和其它分子碰撞的平均次数,称为分子的平均碰撞频率。
假设:每个分子都可以看成直径为d 的弹性小球,分子间的碰撞为完全弹性碰撞。
大量分子中,只有被考察的特定分子A 以平均速率u 运动,其它分子都看作静止不动。