当前位置:文档之家› 二级公路毕业设计外文文献

二级公路毕业设计外文文献

外文资料及翻译Effects of Design Features on Rigid Pavement PerformanceThe performance of rigid pavements is affected by a variety of design features, including slab thickness, base type, joint spacing, reinforcement, joint orientation, load trans fer, dowel bar coatings, longitudinal joint design, joint sealant, tied concrete shoulders ,and subdrainage . A study was made by ERES Consultants, Inc. under FHWA contract on the effects of these features on rigid pavement performance . Ninety-five pavemen tsections located in four major climatic regions were thoroughly evaluated . The following conclusions, which provide some revealing insights into pavement performance, are abstracted from the report (Smith et al., 1990a).Slab Thickness The effect of slab thickness on pavement performance was significant.It was found that increasing slab thickness reduced transverse and longitudinal cracking in all cases. This effect was much more pronounced for thinner slabs than fo rthicker slabs . It was not possible to compare the performance of the thinner slabs and the thicker slabs directly, because the thick slabs were all constructed directly on th esubgrade and the thinner slabs were all constructed on a base course .Increasing the thickness of slab did not appear to reduce joint spalling or join tfaulting . Thick slabs placed directly on the subgrade, especially in wet climates an dexposed to heavy traffic, faulted as much as thin slabs constructed on a base course .Base Type Base types, including base/slab interface friction, base stiffness, base erodibility, and base permeability, seemed to have a great effect on the performance of jointed concrete pavements . The major performance indicators, which were affected by variations in base type, were transverse and longitudinal cracking, joint spalling, and faulting .The worst performing base type, consisted of the cement-treated or soil cement bases, which tended to exhibit excessive pumping, faulting, and cracking. This is most likely due to the impervious nature of the base, which traps moisture and yet can brea- k down and contribute to the movement of fines beneath the slab .The use of lean concrete bases generally produced poor performance . Large curl -ing and warping stresses have been associated with slabs constructed over lean concrete bases. These stresses result in considerable transverse and longitudinal cracking of the slab . The poor performance of these bases can also be attributed to a bathtub design, in which moisture is trapped within the pavement cross section .Dense-graded asphalt-treated base courses ranged in performance from very poor to good. The fact that these types of bases were often constructed as a bathtub design contributed to their poor performance . This improper design often resulted in severe cracking, faulting, and pumping.The construction of thicker slabs directly on the subgrade with no base resulted In a pavement that performed marginally. These pavements were especially susceptible to faulting, even under low traffic levels.Pavements constructed over aggregate bases had varied performance, but were generally in the fair to very good category. In general, the more open-graded the aggregate,the better the performance . An advantage of aggregate bases is that they contribute the least to the high curling and warping stresses in the slab . Even though aggregate bases are not open-graded, they are more permeable and have a lower friction factor than stabilized bases .The best bases in terms of pavement performance were the permeable bases . Typical base courses have permeabilities ranging from 0 to less than 1 ft/day (0 .3 m/day) ; good permeable bases have permeabilities up to 1000 ft/day (305 m/day) . Specific areas of concern were the high corner deflections and the low load transfer exhibited by the permeable bases . These can affect their long-term performance, so the use of dowel bars might be required . An unexpected benefit of using permeable bases was the reduction in "D" cracking on pavements susceptible to this type of distress .Slab Length For JPCP, the length of slabs investigated ranged from 7 .75 to 30 ft(2.4to9.1m). It was found that reducing the slab length decreased both the magnitude of the joint faulting and the amount of transverse cracking. On pavements with random joint spacings, slabs with joint spacings greater than 18 ft (5.5 m) experienced more transverse cracking than did the shorter slabs .For JRCP, the length of slabs investigated ranged from 21 to 78 ft (6 .4 to 23 .9 m) .Generally, shorter joint spacings performed better, as measured by the deteriorated transverse cracks, joint faulting, and joint spalling . However, several JRCP with long joint spacings performed quite well . In particular, the long jointed pavements in New Jersey, which were constructed with expansion joints, displayed excellent performance .An examination of the stiffness of foundation was made through the use of the radius of relative stiffness, f . Generally speaking, when the ratio L/E, where L is the length of slab, was greater than 5, transverse cracking occurred more frequently . Thisfactor was further examined for different base types . It was found that stiffer base courses required shorter joint spacings to reduce or eliminate transverse cracking .Reinforcement The amount of steel reinforcement appeared to have an effect in controlling the amount of deteriorated transverse cracking . Pavement sections with less than 0.1% reinforcing steel often displayed significant deteriorated transverse cracking.A minimum of 0 .1% reinforcing steel is therefore recommended, with larger amounts required for more severe climate and longer slabs.Joint Orientation Conventional wisdom has it that skewed joints prevent the application of two wheel loads to the joint at the same time and thus can reduce load-associated distresses . The results from the limited sample size in this study were ambiguous, but all of the nondoweled sections with skewed joints had a lower PSR than similar designs with perpendicular joints . The available data provide no definite conclusions on the effectiveness of skewing transverse joints for nondoweled slabs . Skewed joints are not believed to provide any benefit to doweled slabs.Load Transfer Dowel bars were found to be effective in reducing the amount of joint faulting when compared with nondoweled sections of comparable designs. The diameter of dowels had an effect on performance, because larger diameter bars provided better load transfer and control of faulting under heavy traffic than did smaller dowels.It appeared that a minimum dowel diameter of 1 .25 in . (32 mm) was necessary to provide good performance .Nondoweled JPCP slabs generally developed significant faulting, regardless of pavement design or climate . This effect was somewhat mitigated by the use of permeable bases. However, the sections in this group had a much lower number of accumulated ESAL, so no definite conclusions can be drawn yet .Dowel Bar Coatings Corrosion-resistant coatings are needed to protect dowels from the adverse effects of moisture and deicing chemicals .While most of the sections in this study did not contain corrosion-resistant dowel bars, those that did generally exhibited enhanced performance. Very little deteriorated transverse cracking was identified on these sections. In fact, one section in New Jersey with stainless steel-clad dowel bars was performing satisfactorily after 36 years of service .Longitudinal Joint Design The longitudinal joint design was found to be a critical design element.Both inadequate forming techniques and insufficient depths of joint can contribute to the development of longitudinal cracking . There was evidence of the ad vantage of sawing the joints over the use of inserts . The depth of longitudinal joints is generally recommended to be one-third of the actual, notdesigned, slab thickness, but might have to be greater when stabilized bases are used .Joint Sealant Joint sealing appeared to have a beneficial effect on performance . This was particularly true in harsh climates with excessive amounts of moisture . Preformed compression sealants were shown to perform well for more than 15 years under heavy traffic.Except where "D" cracking occurred, pavement sections containing preformed sealants generally exhibited little joint spalling and were in good overall conditions.Rubberized asphalt joint sealants showed good performance for 5 to 7 years.Tied Concrete Shoulders It is generally believed that tied concrete shoulders can reduce edge stresses and corner deflections by providing more lateral supports to the mainline pavement, thus improving pavement performance . Surprisingly, this study showed that, although tied concrete shoulders performed better than asphalt shoulders,many of the tied shoulders were not designed properly and actually contributed to poor performance of the mainline pavement . The tiebars were spaced too far apart ,sometimes at a spacing of 40 in.(1016 mm), and were not strategically located near slab corners to provide adequate support . In some cases, tied concrete shoulders were constructed over a stabilized dense-graded base in a bathtub design, resulting in the poor performance of mainline pavement.Subdrainage The provision of positive subdrainage, either in the form of longitudinal edge drains or the combination of a drainage layer and edge drains, generally reduced the amount of faulting and spalling related to "D" cracking . With few exceptions, the load-associated distresses, especially faulting and transverse cracking, decreased as the drainage characteristics improved . The overall pavement performance can be improved by using an open-graded base or restricting the percentage of fines . A filter layer must be placed below the permeable base, and regular maintenance of the outlets must be provided .译文结构特点对刚性路面性能的影响刚性路面的性能受种种结构特点的影响,如板厚、基层类型、接缝间距、钢筋用量、接风方向、荷载传递、传力杆涂层、纵缝设计、接缝填封料、有拉杆混凝土道肩和地下排水等。

相关主题