当前位置:文档之家› 石墨烯纳米材料(论文)

石墨烯纳米材料(论文)

《应用胶体化学》论文大作业——石墨烯纳米材料姓名:***学号:************年级:2009级2011-12-11摘要:石墨烯是继富勒烯、碳纳米管之后发现的一种具有二维平面结构的碳纳米材料,它自 2004 年发现被以来,成为凝聚态物理与材料科学等领域的一个研究热点。

石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。

因而吸引了化学、材料等其他领域科学家的高度关注。

本文简要介绍了石墨烯的性能特点、制备方法,着重对石墨烯纳米复合材料进行了介绍,对石墨烯纳米材料的制备方法、理化性质、国内外研究进展、石墨烯纳米材料的优缺点及应用前景进行了详细介绍。

关键词:石墨烯纳米材料复合物特性制备应用目录引言 (4)一石墨烯纳米材料的理论与实际意义 (4)二石墨烯纳米材料的国内外研究现状及比较分析 (5)2.1 石墨烯纳米材料的国内外研究 (5)2.1.1 国外研究 (5)2.1.2 国内研究 (8)2.2 石墨烯纳米材料的国内外研究比较分析 (11)三文献中石墨烯纳米材料的研究方案 (11)3.1 聚乳酸/ 纳米羟基磷灰石/ 氧化石墨烯(PLA/n-HA/GO)纳米复合膜的制备及生物性 (11)3.1.1 实验试剂 (11)3.1.2 PLA/n-HA/GO纳米复合膜的制备 (11)3.2 石墨烯负载Pt催化剂的制备及催化氧还原性能[43] (12)3.2.1 试剂和仪器 (12)3.2.2 石墨烯负载Pt催化剂的制备 (12)3.3 石墨烯的制备和改性及其聚合物复合的研究进展[44] (12)3.3.1 石墨烯的制备 (12)3.3.2 制备聚合物基复合材料 (14)3.4 石墨烯/聚合物复合材料的研究进展[45] (14)3.4.1 石墨烯的制备 (14)3.4.2 石墨烯/聚合物复合材料的制备 (15)3.5 石墨烯的合成与应用[46] (16)3.5.1 微机械分离法(micromechanical cleavage) (16)3.5.2 取向附生法———晶膜生长(eqitaxial growth) (16)3.5.3 加热SiC的方法 (17)3.5.4 化学分散法 (17)四结合胶体理论与性质比较分析各种石墨烯纳米材料的优缺点 (17)4.1 石墨烯 (17)4.2 氧化石墨烯 (18)4.3 石墨烯/无机物纳米材料 (18)4.4 石墨烯/聚合物纳米材料 (18)五展望石墨烯纳米材料的应用前景 (18)参考文献 (20)引言石墨烯自2004年被发现以来,因其优异的电学、力学、热学、光学等性能,已经深深地影响了物理、化学和材料学领域,被广泛应用于复合材料、纳米电子器件、能量储存、生物医学和传感器等范围,表现出巨大的潜在应用前景。

石墨烯是近年来发现的新型碳纳米材料,它基本具有碳材料的所有优点,而且还拥有更高的比表面积和导电率,能够克服碳纳米管的一些缺陷,使其成为了一个非常理想的纳米组合成分来制备石墨烯的复合材料。

自从石墨烯被发现以来,越来越多科学家开始关注基于石墨烯的复合材料的研究。

目前,石墨烯的复合材料己在催化、储能、生物医药等领域展现出优越的性质和潜在的应用价值。

例如,将石墨烯添加到高分子中,可以提高高分子材料的机械性能和导电性能;通过石墨烯与许多不同结构和性质的纳米粒子进行复合,制备出新型石墨烯-纳米粒子纳米杂化体,可以提高这些粒子在储能、催化、传感器、光电等领域的应用性能等等。

这些复合物的制备也拓宽了石墨烯材料的研究领域,使得石墨烯材料更有利于实际应用。

一石墨烯纳米材料的理论与实际意义石墨烯本身作为一种新型碳纳米材料,由于其特殊的结构特性使其在电学、力学、热学、光学等方面具有优异的性能,如量子霍尔效应、量子隧穿效应等。

由于具有独特的纳米结构和优异的性能,石墨烯可应用于许多的先进材料与器件中,如薄膜材料、储能材料、液晶材料、机械谐振器等;石墨烯是单层石墨,原料易得,所以价格便宜,不像碳纳米管那样价格昂贵,因此石墨烯有望代替碳纳米管成为聚合物基碳纳米复合材料的优质填料。

而在石墨烯中引入其他物质制成的复合物称为石墨烯纳米复合材料。

石墨烯纳米复合材料主要分为两类:石墨烯/无机物纳米材料和石墨烯/聚合物纳米材料。

目前制备的石墨烯纳米复合材料并不多, 主要是因为石墨烯既不亲水也不亲油, 反应活性不高, 使得对它进行改性比较困难, 从而导致与其它材料复合也比较困难。

现在制备石墨烯纳米复合材料主要是先让氧化石墨与其它材料复合, 再将其中的氧化石墨还原得到石墨烯纳米复合材料; 或者用改性过的石墨烯与其它材料复合。

石墨烯纳米复合材料是在石墨烯的基础上添加上具有特定性能的聚合物或无机物,使其在某一方面或某几方面具有更加优异的特性。

这使得它在很多领域都有广阔的应用前景。

石墨烯的优秀特性加上聚合物或无机物而形成的石墨烯纳米复合材料将实现高效、经济、环保等技术追求,这将迎来材料界的新革命。

二石墨烯纳米材料的国内外研究现状及比较分析2.1 石墨烯纳米材料的国内外研究近年来,石墨烯纳米材料由于其在电学、力学、热学、光学等方面具有优异的性能,称为国内外研究的宠儿,已成为材料、化学、物理等众多领域研究的热点。

2.1.1 国外研究①石墨烯的研究2004 年,曼彻斯特大学 Geim[1]等即采用机械法从高定向热解石墨( HOPG) 上剥离出单层石墨烯。

他们在 HOPG 表面用氧等离子刻蚀微槽,并用光刻胶将其转移到玻璃衬底上,用透镜胶带反复撕揭,尔后将玻璃衬底放入丙酮溶液中超声清洗,并在溶液中放入单晶硅片,单层石墨烯会在范德华力作用下吸附到硅片表面。

后来机械法简化为直接用胶带从 HOPG 上揭下一层石墨,然后在胶带之间反复粘贴,石墨片层会越来越薄( 其中包含单层石墨烯) ,再将胶带贴在衬底上,单层石墨烯就转移到衬底上了。

Novoselov等[2]用微机械分离法制备了石墨烯。

他们研究发现用另一种材料膨化或引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,这些晶体中含有单层的石墨烯。

Bunch 等[3]将天然石墨絮片在二氯苯溶液中超声处理,然后将溶液滴在表面附着氧化膜的硅晶片上,用异丙醇进行洗涤,再在氮气中晾干,可以得到单层石墨烯片层形成的几纳米厚的膜。

Meyer 等[4]将微机械分离法制得的含有石墨烯硅晶片放在经过刻蚀的金属架上,用酸将硅晶片腐蚀去除,制备出由金属架支撑的悬空的单层石墨烯,此外用TEM发现单层石墨烯并不是平整的平面,而是有5~10nm高度的褶皱。

Meyer 等[5]还研究了单层和双层石墨烯表面的褶皱程度,发现单层石墨烯表面褶皱明显大于双层石墨烯,并且随着石墨烯层数的增加褶皱程度越来越小,最后趋于平滑。

Schleberger 等[6]用微机械分离法在不同绝缘晶体基底上(SrTiO3,TiO2,Al2O3和CaF2等)制备出石墨烯,所制得的石墨烯单层厚度仅为0.34nm,远低于在 SiO2基底上制备得到的石墨烯。

Srivastava 等[7]用微波增强化学气相沉积法在Ni包裹的Si衬底上生长出了20 nm 厚的石墨烯,并研究了微波功率对石墨烯形貌的影响。

研究发现,微波功率越大,石墨烯片越小,但密度更大;且发现石墨烯片中含有较多的Ni元素。

Dato等[8]研究了一种新型等离子体增强化学气相沉积法,用乙醇作为碳源,利用Ar 等离子体合成了石墨烯。

Kim 等[9]用电子束蒸发的方法在SiO2/ Si衬底上沉积了厚度小于300 nm 的Ni薄膜,再把样品放人石英管中,Ar作为保护气体,加热至1000℃,然后通入甲烷、氢气与氩气的混合反应气体,利用氩气使样品以10℃/s 的速率迅速降到室温。

研究发现: 此种方法生长的石墨烯呈现一些皱褶,皱褶使得石墨烯的存在更加稳定,降温速率对抑制更多层碳薄膜的形成和石墨烯从衬底上分离起着关键作用。

Reina 等[10]在用化学气相沉积法在多晶 Ni 薄膜表面制备了尺寸可达到厘米数量级的石墨烯。

Ruoff[11]用化学气相沉积法在Cu箔基底表面上制备了大面积、高质量的石墨烯,且主要为单层石墨烯。

Schniepp 等[12]用浓盐酸、浓硝酸及过量的氯酸钾作为氧化剂,使鳞片石墨充分氧化 96h,尔后在充满氩气的容器中以大于2000℃/min迅速升温至1050℃,含氧基团产生二氧化碳将石墨片层与片层剥离开。

剥离开的氧化石墨表面积高700~1500m2/g,单层氧化石墨直径约500nm,层厚1.1nm。

Stankovich 等[13]研究了化学还原剥离的氧化石墨制备石墨烯薄片。

研究发现: 石墨烯片具有和初始石墨相似的性质,且比表面积高;氧化石墨烯经还原后会产生不饱和的、共轭的碳原子,使电导率显著增加,因此还原后的氧化石墨烯可应用于储氢材料或作为电传导填充料应用在复合材料领域。

Li 等[14]通过用氨水调节溶液pH值,控制石墨层间的静电作用,制备出在水中稳定分散的石墨烯悬浮液,其电导率达到7200S/m。

Si 等[15]通过间歇性还原制备了水溶性的石墨烯,即先用 NaBH4对氧化石墨进行部分还原,然后在部分还原的氧化石墨上引入苯磺酸基团,再用水合肼进行彻底的还原得到石墨烯。

该方法制备的石墨烯在浓度为2mg/mL以下时能够稳定分散在pH 为3~10的水中。

②石墨烯/聚合物复合材料Stankovich 等[17]将经过化学修饰的石墨烯在聚合物中以分子尺度分散制备出石墨烯-聚合物复合材料。

该复合材料具有较低的导电渗阈值,在体积分数为0.1%时下即可导电。

在石墨烯体积分数为1%时,复合材料的电导率达0.1S/m,2.5%时达1S/m。

Ramanathan 等[19]研究了功能化的石墨烯聚合物纳米复合材料。

研究发现: 石墨烯的加入有助于克服聚合物粒子之间的相互作用,可提高聚合物的模量、强度、玻璃化转变温度和热分解温度,其效果与单壁碳纳米管相当;如加入1wt%的石墨烯薄片,聚丙烯腈的玻璃化转变温度提高40℃,在加入 0.05wt%石墨烯薄片,聚甲基丙烯酸甲酯玻璃化转变温度提高近 30℃。

Ansari 等[21]用热还原得到的石墨烯与聚偏二氟乙烯在 DMF 溶液中进行复合,样品经热压成型制备得到石墨烯/聚偏二氟乙烯纳米复合材料。

研究发现:热还原得到的石墨烯有利于聚偏二氟乙烯形成β型晶体;样品比纯聚偏二氟乙烯的热稳定性要好;含石墨烯 4%的复合材料弹性模量比纯聚偏二氟乙烯提高了近2倍;石墨烯/聚偏二氟乙烯纳米复合材料的电渗滤阈值仅为2%,其电阻率随温度的升高反而降低,而通过石墨超声剥离而得到的石墨烯与聚偏二氟乙烯的复合材料电阻率随温度的升高而升高。

相关主题