当前位置:文档之家› 杆件的强度计算公式(优质特享)

杆件的强度计算公式(优质特享)

杆件的强度、刚度和稳定性计算1.构件的承载能力,指的是什么?答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。

(1)足够的强度。

即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。

(2)足够的刚度。

即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。

(3)足够的稳定性。

即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。

2.什么是应力、正应力、切应力?应力的单位如何表示?答:内力在一点处的集度称为应力。

垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。

应力的单位为Pa。

1 Pa=1 N/m2工程实际中应力数值较大,常用MPa或GPa作单位1 MPa=106Pa1 GPa=109Pa3.应力和内力的关系是什么?答:内力在一点处的集度称为应力。

4.应变和变形有什么不同?答:单位长度上的变形称为应变。

单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。

单位横向长度上的变形称横向线应变,以ε/表示横向应变。

5.什么是线应变?什么是横向应变?什么是泊松比?答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表示。

对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为l l∆=ε(4-2)拉伸时ε为正,压缩时ε为负。

线应变是无量纲(无单位)的量。

(2)横向应变拉(压)杆产生纵向变形时,横向也产生变形。

设杆件变形前的横向尺寸为a,变形后为a1,则横向变形为aaa-=∆1横向应变ε/为a a∆=/ε(4-3)杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。

因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。

(3)横向变形系数或泊松比试验证明,当杆件应力不超过某一限度时,横向应变ε/与线应变ε的绝对值之比为一常数。

此比值称为横向变形系数或泊松比,用μ表示。

εεμ/=(4-4)μ是无量纲的量,各种材料的μ值可由试验测定。

6.纵向应变和横向应变之间,有什么联系?答:当杆件应力不超过某一限度时,横向应变ε/与纵向应变ε的绝对值之比为一常数。

此比值称为横向变形系数或泊松比,用μ表示。

εεμ/=(4-4) μ是无量纲的量,各种材料的μ值可由试验测定。

7.胡克定律表明了应力和应变的什么关系?又有什么应用条件?答:它表明当应力不超过某一限度时,应力与应变成正比。

胡克定律的应用条件:只适用于杆内应力未超过某一限度,此限度称为比例极限。

8. 胡克定律是如何表示的?简述其含义。

答:(1)胡克定律内力表达的形式EA lF l N =∆(4-6) 表明当杆件应力不超过某一限度时,其纵向变形与杆件的轴力及杆件长度成正比,与杆件的横截面面积成反比。

(2)胡克定律应力表达的形式εσ⋅=E(4-7)是胡克定律的另一表达形式,它表明当应力不超过某一限度时,应力与应变成正比。

比例系数E 称为材料的弹性模量,从式(4-6)知,当其他条件相同时,材料的弹性模量越大,则变形越小,这说明弹性模量表征了材料抵抗弹性变形的能力。

弹性模量的单位与应力的单位相同。

EA 称为杆件的抗拉(压)刚度,它反映了杆件抵抗拉伸(压缩)变形的能力。

EA 越大,杆件的变形就越小。

需特别注意的是:(1)胡克定律只适用于杆内应力未超过某一限度,此限度称为比例极限(在第三节将作进一步说明)。

(2)当用于计算变形时,在杆长l 内,它的轴力F N 、材料E 及截面面积A 都应是常数。

9.何谓形心?如何判断形心的位置?答:截面的形心就是截面图形的几何中心。

判断形心的位置:当截面具有两个对称轴时,二者的交点就是该截面的形心。

据此,可以很方便的确定圆形、圆环形、正方形的形心;只有一个对称轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。

10.具有一个对称轴的图形,其形心有什么特征?答:具有一个对称轴的图形,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。

11.简述形心坐标公式。

答:建筑工程中常用构件的截面形状,一般都可划分成几个简单的平面图形的组合,叫做组合图形。

例如T 形截面,可视为两个矩形的组合。

若两个矩形的面积分别是A 1和A 2,它们的形心到坐标轴z 的距离分别为y 1和y 2,则T 形截面的形心坐标为212211A A y A y A y C +⋅+⋅=更一般地,当组合图形可划分为若干个简单平面图形时,则有∑∑⋅=iii CAy A y(4-8) 式中y C ——组合截面在y 方向的形心坐标; A i ——组合截面中各部分的截面面积;y i ——组合截面中各部分的截面在y 方向的形心坐标。

同理可得∑∑⋅=iii CAz A z(4-9)12.何谓静矩?答:平面图形的面积A 与其形心到某一坐标轴的距离的乘积称为平面图形对该轴的静矩。

一般用S 来表示,即:Cy Cz z A S y A S ⋅=⋅=即平面图形对z 轴(或y 轴)的静矩等于图形面积A 与形心坐标y C (或z C )的乘积。

当坐标轴通过图形的形心时,其静矩为零;反之,若图形对某轴的静矩为零,则该轴必通过图形的形心。

13.组合图形的静矩该如何计算?答:对组合图形,同理可得静矩的计算公式为⎪⎭⎪⎬⎫⋅=⋅=∑∑Ci i y Ci i z z A S y A S (4-10)式中A i 为各简单图形的面积,y Ci 、z Ci 为各简单图形形心的y 坐标和z 坐标。

(4-10)式表明:组合图形对某轴的静矩等于各简单图形对同一轴静矩的代数和。

14.何谓惯性矩?、圆形截面的惯性矩公式如何表示?答:截面图形内每一微面积dA 与其到平面内任意座标轴z 或y 的距离平方乘积的总和,称为该截面图形对z 轴或y 轴的惯性矩,分别用符号I z 和I y 表示。

即⎪⎩⎪⎨⎧==⎰⎰Ay A z dA z I dAy I 22(4-11)不论座标轴取在截面的任何部位,y 2和z 2恒为正值,所以惯性矩恒为正值。

惯性矩常用单位是m 4 (米4)或mm 4 (毫米4)。

15.试算出矩形、圆形的惯性矩。

答:(1)矩形截面⎰⎰-=⋅⋅==2232212h h Az bh dy b y dA y I图4-10 图4-11同理可求得123h b I y =对于边长为a 的正方形截面,其惯性矩为124a I I y z == (2)圆形截面图4-12图4-12所示圆形截面,直径为d ,半径为R ,直径轴z 和y 为其对称轴,取微面积dy y R dA ⋅-=222积分得圆形截面的惯性矩为:⎰⎰-==-==RRAz d R dy y R ydA y I 6442442222ππ同理可求得644d I y π=16.试说出平行移轴公式每个量的计算方法。

答:(1)平行移轴公式A a I I z z 21+= (4-12a )同理得Ab I I y y 21+=(4-12b)公式4-12说明,截面图形对任一轴的惯性矩,等于其对平行于该轴的形心轴的惯性矩,再加上截面面积与两轴间距离平方的乘积,这就是惯性矩的平行移轴公式。

17.组合图形惯性矩的计算分哪几个步骤?答:组合图形对某轴的惯性矩,等于组成它的各个简单图形对同一轴惯性矩之和。

(1)求组合图形形心位置;(2)求组合图与简单图形两轴间距离;(3)利用平行移轴公式计算组合图形惯性矩。

18.低碳钢拉伸时,其过程可分为哪几个阶段?答:根据曲线的变化情况,可以将低碳钢的应力-应变曲线分为四个阶段:弹性阶段,屈服阶段,强化阶段,颈缩阶段。

19.为什么说屈服强度与极限强度是材料强度的重要指标? 答:屈服强度与极限强度是材料强度的重要指标:(1)当材料的应力达到屈服强度σs 时,杆件虽未断裂,但产生了显著的变形,势必 影响结构的正常使用,所以屈服强度σs 是衡量材料强度的一个重要指标。

(2)材料的应力达到强度极限σb 时,出现颈缩现象并很快被拉断,所以强度极限σb 也是衡量材料强度的一个重要指标。

20.什么是试件拉断后的延伸率和截面收缩率?答:(1)延伸率:试件拉断后,弹性变形消失,残留的变形称为塑性变形。

试件的标距由原来的l 变为l 1,长度的改变量与原标距l 之比的百分率,称为材料的延伸率,用符号δ表示。

001100⨯-=l ll δ(4-14)(2)截面收缩率:试件拉断后,断口处的截面面积为A 1。

截面的缩小量与原截面积A 之比的百分率,称为材料的截面收缩率,用符号ψ表示。

001100⨯-=A A A ψ(4-15)21. 试比较塑性材料与脆性材料力学性能有何不同?答:塑性材料的抗拉和抗压强度都很高,拉杆在断裂前变形明显,有屈服、颈缩等报警现象,可及时采取措施加以预防。

脆性材料其特点是抗压强度很高,但抗拉强度很低,脆性材料破坏前毫无预兆,突然断裂,令人措手不及。

22.许用应力的涵义是什么?答:任何一种构件材料都存在着一个能承受应力的固有极限,称极限应力,用σ0表示。

为了保证构件能正常地工作,必须使构件工作时产生的实际应力不超过材料的极限应力。

由于在实际设计计算时有许多不利因素无法预计,构件使用时又必须留有必要的安全度,因此规定将极限应力σ0缩小n 倍作为衡量材料承载能力的依据,称为许用应力,以符号[σ]表示:[]n 0σσ=(4-16) n 为大于l 的数,称为安全因数。

23.轴向拉伸(压缩)正应力计算公式是什么?并解释每个量的物理意义。

答:如用A 表示杆件的横截面面积,轴力为F N ,则杆件横截面上的正应力为A F N=σ(4-17) 正应力的正负号规定为:拉应力为正,压应力为负。

24.轴向拉伸(压缩)杆的最大应力出现在什么截面?答:当杆件受几个轴向外力作用时,由截面法可求得最大轴力F Nmax ,对等直杆来讲,杆件的最大正应力算式为:A F N maxmax =σ(4-18) 最大轴力所在的横截面称为危险截面,由式4-18算得的正应力即危险截面上的正应力,称为最大工作应力。

25.简述轴向拉伸(压缩)的强度计算答:对于轴向拉、压杆件,为了保证杆件安全正常地工作,就必须满足下述条件[]σσ≤max(4-19)上式就是拉、压杆件的强度条件。

对于等截面直杆,还可以根据公式(4-18)改为[]σ≤A F N max(4-20)26.轴向拉伸(压缩)杆的强度条件可以解决哪三类问题?答:在不同的工程实际情况下,可根据上述强度条件对拉,压杆件进行以下三方面的计算: (1)强度校核如已知杆件截面尺寸、承受的荷载及材料的许用应力,就可以检验杆件是否安全,称为杆件的强度校核。

(2)选择截面尺寸如已知杆件所承受的荷载和所选用的材料,要求按强度条件确定杆件横截面的面积或尺寸,则可将式(4-20)改为[]σmaxN F A ≥(4-21) (3)确定允许荷载如已知杆件所用的材料和杆件横截面面积,要求按强度条件来确定此杆所能容许的最大轴力,并根据内力和荷载的关系,计算出杆件所允许承受的荷载。

相关主题