当前位置:
文档之家› 动平衡与静平衡理论的方法及区别
动平衡与静平衡理论的方法及区别
3.1.2 刚性转子的平衡方法
凡工作转速高于第一阶临界转速(no>ncr1),且
挠曲不严重的转子均可视为刚性转子,(对于较短较粗
的转子,如风机、电动场平衡。
一、试加重量的选择
利用试加重量,使机组振动振幅发生变化,以求得 不平衡质量与振幅之间的对应关系,即知晓单位不平衡 重会引起多大的振幅变化。若试加重量选得太小,振幅 变化不显著(不灵敏),选得太大,且加重角度不合适, 会造成启动紧张升速困难(机组振动振幅过大不安全), 因此正确选择试加重量的大小和加重方位至关重要,它 有利于减少机组平衡启停次数,缩短平衡时间。
精品文档
(一)根据经验公式求得试加重量大小
P 1.5 A0W
R
n
2
3000
上式对n=3000r/min机组较为合适,
式中
A0—原始振幅(μm); R—加重半径(mm);
W—转子重量m(Kg)
精品文档
(二) 试加重量位置(方位)选择的原则
到目前为止,试加重量的方位选择主要依靠 经验
• 一般其不平衡重量超前测振点130~150º。
差也很大( A0 B0 )图3-16)A端加(动.静)
(6)
A0
、B 0
之间夹角接近90º,A 0 、B 0 A0
的振幅值
相差很大(图3-17)。在A端加平衡质量(动.静)
精品文档
由图3-15—图3-17可以看出,当 A 0 、B 0
的振动幅值相差很大,不管之间的夹角如何,
都是一侧不平衡,只要在一侧加(或减)平衡
方向相反的力
F2
、 F2
,则
F1
、F2
、 F2
、
F2
四个力组成
的力系与原、力系完全等价。
图3-6二平面转子受力分析
精品文档
在0点求 F1 、F2 的合力F1,2 ,Ⅰ平面中剩下的F2 与Ⅱ平面中F的2
正好组成力偶。经这样分解,得到了一般的不平衡状况,即将动静
混合不平衡问题归结为一个合力
F1,
二、刚性转子的平衡原理
1.不平衡离心力的分解
图3-4三种不平衡
(1)分解为一个合力及一个力偶
矩,以两平面转子为例。由理论力学可 图3-4三种不平衡
知,不平衡力(任意力系)可以分解为一个径向力和一个 力偶。
精品文档
如图3-6所示二平面转子,不平衡离心力
F1
、F2
,
分别
置于Ⅰ、Ⅱ平面上。若在Ⅰ平面0点上加一对大小相等、
精品文档
由上可见,转子偏心离心力Fo的方向与轴心
位移最大值A的方向不一致,Fo总顺转速方向超
前一个角度(即相位差角)。转速不变时,相位
差角基本不变。经验数据为,
刚性转子=15º~70º(多数为15º~45º)
挠性转子=100º~130º(≤160º)
在临界转速时=90º
式(3-5)与式(3-7)称为线性条件,它 们是刚性转子平衡校正工作的基础和依据。但由 于实际机组振动系统的复杂性(如轴承刚度、油 膜刚度、中心不正等),带来平衡重量及相位计 算误差。但总的说来,对刚性转子的平衡,这两 个线性条件还是比较符精品合文档 的。
二个平衡重量的结果相同,亦可在二个任
意(垂直于轴线)平面上的相应位置加二
个对称的共面平衡重量平衡静不平衡量,
在另一相应位置加上二个反对称的共面平
衡重量平衡动不平衡量,这样转子亦可获
得平衡。
精品文档
5. 不平衡振动的初步分析
平衡转子前对振动(振幅和相位)进行初步
分析十分必要。
刚性转子的任一不平衡离心力均可分解为任 选二平面上的一对对称力及一对反对称力.同理, 振动也可分解为一对对称分振动及一对反对称分 振动。
然后在l平衡平面内加试重P,再将转子启动升速
至平衡试验转速,同样测取诸测点处的振幅AiI、相位aiI, 其次将试重P依次移加到第Ⅱ、Ⅲ直到第(q—1)平衡
平面上,逐次将转子启动升速至平衡试验转速,每次在P
个测点处测取不平衡振动振幅Aij和相位角aij,对于平衡 平面j而言,它对各测点的影响系数为:
若在二支承转子两端测得A侧振动值为 A 0 、B侧振
动值为 B 0 。将二振动矢量移动交于一点0,再
将 A 0 、B 0 顶点连线的中点与0点相联,即得:
A0 As AD
B0 Bs BD
精品文档
精品文档
则
As Bs 12(A0B0)
As Bs 12(A0B0)
初步分析A s B、s 及A D B、0 的数值及相位,就能判断 引起振动的主要原因(是静不平衡还是动不平衡造成) 以及不平衡质量主要位于哪一侧。 (1) A 0 、B 0 之间相位差不大(<=45º)、振幅值也相差 不大(图3-12)。由于 As AD ; Bs BD ,说明 振动主要由静不平衡引起、加减(或减)对称(同相) 平衡质量即可消除或减小振动。
精品文档
(二) 幅相影响系数法
对于转子——轴承系统,在确定的转速下,
转子的不平衡振动Ai与其不平衡量Uj之间可用一 系数 ij 相联系起来:
A iijU j
式中 i1,2,,P ; j1,2,,q ij , 反映了转子在i处的 不平衡振动和j处不平衡量之间的内在联系,称为线性影
响系数,
1. 定义 ij 加试重j平 后面 的上 振 原 加 动始 的 矢振 试 量动 重
动平衡理论与方法
3.1 刚性转子的平衡
检查和调整转子质量分布的工艺过程(或改善 转子质量分布的工艺方法),称为转子平衡。
3.1.1 刚性转子的平衡原理 一、转子不平衡类型
(一)静不平衡:如果不平衡质量矩存在于质心 所在的径向平面上,且无任何力偶矩存在时称为 静不平衡。它可在通过质心的径向平面加重(或
1
1w wn22
2
m
2
wwn2
w
tg 1
m
w
2 n
w 2
1
wn
由(3-5)式可知,当阻尼,转速w一定时,若w远
离wn( wwn,非共振情况)时,
y F0
而 精品文档
F0
G rw2 g
式中:G为不平衡重量,F0为不平衡离心力,因
此,对于一失衡转子,若阻尼一定,r,w一定,
则不平衡离心力F0与不平衡重量G成线性(比例) 关系,即该系统的振幅y与不平衡重量G成线性 关系。(3-7)式还表明,对于已知体系,阻尼 和wn一定,当w不变时,扰动力与振幅之间的相 位差角也就一定了,即振动(振幅)滞后于干扰 力的角度不变(图3-18)。
•刚性转子可以盘动几次,以静止位置来试加重 量。
•对怀疑存在弯曲的转子,可根据晃度的测量结 果来判断试加重量的位置。
•利用平衡槽加重时,若该侧轴承振动相位为X, 试加重量角度可取为X-240º。
•利用对轮加重时,若该侧轴承振动相位为X,试 加重量角度可取X-210精品º文。档
二、低速动平衡 对于刚性转子,一般只进行低速动平衡就能满
内),就可使整个转子达到平衡。
精品文档
显然,同方向对称力 A s 、B s 可以认为 是由于静不平衡分量产生的,反方向对称
力 A D 、B D ,可以认为是由动不平衡分 量产生的。所以,对刚性转子而言,可用
同方向平衡重量平衡静不平衡分量,用反 方向平衡重量平衡动不平衡分量。
由以上讨论可知,与在二个平面内加
足机组平稳运转的要求。对于挠性转子有时也要 先进行低速动平衡。 现场广泛使用动平衡台来进行转子低速的平衡。 它利用机械共振放大来确定不平衡重量的数值和 位置。
精品文档
三、高速动平衡 低速平衡校正后的转子,高速时,可能平衡
状态不佳,故还需进 行高速动平衡。
(一) 相对相位法 利用相对相位变化
找平衡的方法称为相对 相位法。利用闪光灯或 光电头等均可达到测相 找平衡的目的。
去重),使转子获得平衡
精品文档
(二)动不平衡 假设有一个具有两个平 面的转子的重心位于同一转轴 平面的两侧,且m1r1=m2r2, 整个转子的质心Mc仍恰好位于 轴线上(图3-3),显然,此 时转子是静平衡的。但当转子 旋转时,二离心力大小相等、 方向相反,组成一对力偶,此 力偶矩将引起二端轴承产生周 期性变化的动反力,其数值为:
时,只要上计式算表矢明量,乘在积加重-A径I Q向即平为面Q内引任起意的处振加动重Q变
化。显然式中 AI(在一定转速下)已作常数看待了。
对于同一台机组影响系数是常数,对于同一型号的
机组可以通用(近似认为是一常数)。
•多平面加重
将转子启动升速至平衡试验转速,并让其稳定运转,沿
轴线方向P个位置测取转子诸精品点文档 的原始振动(振幅、相
2
和一个力偶矩F2·l的作用。前者
是静不平衡,后者为动不平衡。
F11
-
精品文档
(2)向任意二平面进行分解(图3-7)
将不平衡离心力 、 分别对任选(径
向)二平面Ⅰ、Ⅱ进行分解。将 分解为Ⅰ、
Ⅱ平面上的平行力 、
力 F21同、理F2,2将,F2 分解为Ⅰ、Ⅱ平面上的平行
迭加F11
、F12
为A ;迭加F12
式中:下标 i1,2,,P(轴承号即测取振动讯号位置) 精品文档 下标 j1,2,,q(加试重的径向平面号)
在零刻度位置加一单位质量后对某轴承引起的振动
(振幅及相位)的变化称为幅相影响系数(记为 ij 或
Kij)。影响系数是一矢量,表示为 。
2. 影响系数计算
• 单平面加重
设A轴承的原始振动为 A0a0 在Ⅰ平面加试重 PP 后,A轴承的振动为 A01a01 因试重引起的振动变化应 为:M M m A 0 1A 0
AijAi0
P
1 1 ij p q
影响系数是各个平衡平面上单位试重对各测点的振动