当前位置:文档之家› 第五章 烟草生物碱

第五章 烟草生物碱

第四章烟草生物碱一.教学目的:1.了解有关的生物碱。

2.掌握烟草生物碱的种类、结构。

3.熟练掌握烟碱的结构、性质、对烟草品质的影响。

4.掌握烟碱的积累规律及影响因素。

二.教学内容:1.生物碱及烟草生物碱概述。

2.烟碱的结构和性质。

3.烟碱的生物合成和积累规律。

4.烟碱对烟质的影响。

5.烟碱的生理作用和对健康的危害。

三.教学重点:1.烟碱的结构和性质。

2.烟碱对烟质的影响。

3.烟碱的生理作用和对健康的危害。

四.教学难点:1.烟碱可能的生物合成路线。

2.烟碱的积累规律及影响因素。

五.学时分配:8学时烟草生物碱属于含氮杂环化合物,但是由于它们是一类特殊的含氮化合物,从结构、性质和对烟质的影响等方面考虑,都与其他含氮化合物不同。

因此,常对其单独进行研究。

第一节. 生物碱概述我们知道,生物界是一个十分庞大、极其复杂的世界,在漫长的进化过程中,生物体内的代谢途径及其产物也必然是形形色色,繁杂纷纭的.如果把碳水化合物、蛋白质、脂类及核酸等这些与生物本身的生存密切相关的物质代谢称为初生代谢产物的话,那么象抗生素、维生素、生物碱等其他对生物体没有明显作用的物质代谢则被称为次生代谢,这些物质被称为次生代谢产物.次生代谢的产物对生物体本身的意义不大,它不是机体生存所必需的物质.但是它同人类的生活关系密切.其产物的开发和利用具有重要的社会价值和商品价值.例如各种抗生素是重要的医药原料,维生素是维持机体生命活动的一类微量小分子有机化合物,能调节机体内的物质代谢过程,许多生物碱对人体有很强的生理作用,是许多中草药的有效成分。

与初生代谢产物相比,次生代谢产物无论是在数量上还是在类型上都要比初生代谢产物多得多和复杂得多.而且,目前对次生代谢产物的研究还远远不及对初生代谢产物研究得那么广泛和深入,根据次生代谢产物的结构特征和生理作用,可将其分为抗生素、生长激素、维生素、色素、生物碱和毒素等不同类型.其中生物碱就是最大的、最引人注意的一类。

生物碱是一类存在于生物体中的有机碱性物质,它主要存在于植物中,所以叫做植物碱。

并不是所有的植物都含有植物碱,含有植物碱的植物并不多.但是一种植物可以含有多种植物碱(最多可达几千种).同科植物所含植物碱的结构往往是相似的。

植物碱通常是与无机酸(硫酸、磷酸、硫氰酸)或有机酸(苹果酸、柠檬酸、草酸、琥珀酸、醋酸、丙酸等)结合成盐而存在于植物中,只有少数植物碱以游离碱的形式存在,也有少数植物碱分别以糖苷、有机酸酯或酰胺的形式存在.大多数生物碱都是结构复杂的多环化合物,分子中大多含有含氮的杂环,有旋光性和明显的生理效应,且多为左旋。

生物碱对于植物本身的作用虽然尚不清楚,但它毕竟是代谢产物,示踪烟碱的研究表明,烟碱和其他生物碱确实参加了植物的代谢活动.很多生物碱对人体有很强的生理作用,是很有效的药物,许多中草药(甘草、当归、黄连、麻黄、贝母、常山等)的有效成分都是生物碱.我国采用中草药治病已有数千年历史,驰名中外.生物碱结构和性质的研究,对于合成更有效的药物,丰富祖国医学宝库,具有重要意义,而且,这也是目前全世界都在关注的问题。

根据生物碱所含碳和氮组成的基本结构,将生物碱分为:四氢吡咯族(古柯叶碱)、六氢吡啶族(胡椒碱)、吡啶-吡咯族(烟碱、阿托品)、缩双四氢吡咯族(狗舌草碱)、缩双六氢吡啶族(羽扁豆碱、鹰爪碱)、喹啉族(金鸡钠碱)、异喹啉族(吐根碱、罂粟碱)、吲哚族(毒扁豆碱、麦角新碱、番木鳖碱、蛇根草素)、咪唑族(毛果芸香碱)、喹唑啉族(常山碱)、嘌呤族(咖啡碱)、菲环族(吗啡碱)、甾型植物碱(贝母素甲)、非杂环族(麻黄碱、秋水仙碱)。

第二节. 烟草生物碱烟草生物碱是一个类群,包括近50种物质,存在于约60多个不同种的烟草中,它们的个别成分也存在于烟草以外的某些植物.烟草生物碱按照其分子结构主要有两类,一类是吡啶与氢化吡咯相结合的化合物,如烟碱(尼古丁)、去甲基烟碱(降烟碱)、去甲基去氢烟碱(表斯明)、二烯烟碱(尼古替林)、去甲基二烯烟碱(降尼古替林)等;另一类是吡啶与吡啶或氢化吡啶相结合的化合物,如新烟碱(安那培新)、N-甲基新烟碱(N-甲基安那培新)、去氢新烟碱(安那他明)、N-甲基去氢新烟碱(N-甲基安那他明)、2,3`-二吡啶等,其结构如下: N NH 3C N N H N N 烟碱 降烟碱 去氢去甲基烟碱 N N H 3C NN H N N H 去甲基二烯烟碱 二烯烟碱 新烟碱 N H 3C N H N N H NN C 3N N 甲基新烟碱 去氮新烟碱 N —甲基去氢新烟碱 2,3’一二吡啶烟草生物碱中,以烟碱为最重要,烟草之所以作为各种形式的消费品,主要是烟碱可以作用于中枢神经系统,使人感到兴奋.它约占烟草生物碱总量的95%以上.其次是去甲基烟碱、新烟碱等.去甲基烟碱又称降烟碱以左旋、右旋、外消旋三种形式存在.烤烟中降烟碱的存在对吃味不利,一般认为它是在烟叶生长,烘烤和复烤期间由烟碱形成的。

新烟碱又称假木贼碱,它的生理效应和其他性质基本上与烟碱相同。

第三节. 烟碱的结构和性质一.烟碱的结构烟碱的英文名称是Nicotine(尼古丁).据资料介绍,1561年法国驻葡萄牙大使琼·尼可特(Jean·Nicot)把黄花烟草献给法国皇后卡萨林,开始作为观赏植物种在花园里,后被人们作为鼻烟来利用,发现烟草中有一种刺激性物质,就以这个大使的名字来命名,这即是Nicotine的来历.1753年植物分类学家林奈斯(Linnaeus)就用这个名称作为烟草属的属名:Nicotiana。

1825年,瑞士化学家培柯特(A·Pikete)首次从烟草中分离出尼古丁.1893年,培耳尔(Pinner)完全以化学方法最早确定尼古丁的化学结构.1928年,spath 和Bretschneider用化学合成法证实了这种结构.即尼古丁的化学名称为1-甲基-2-(3'-吡啶)吡咯烷。

烟碱和新烟碱的分子式都是C10H14N2,它们是同分异构体.去甲基烟碱的分子式是C9H12N2。

二.烟碱的物理性质烟碱在室温下为无色或淡黄色油状液体,与空气接触很快变为棕黄色.有强烈的刺激性,味辛辣.沸点247℃,比重1.009(20℃),具有左旋性.烟碱可溶于水,并可与水以任意比例相混溶.有潮解性,在60℃以下能与水反应生成水合物.具有随水蒸气挥发而不分解的特殊性质,常规分析中从烟草样品中提取烟碱就是根据这种性质进行的.在调制、发酵以及烟草制品加工过程中,在高温有水分蒸发的情况下,烟碱随之蒸发而含量减少.烟碱也能溶于乙醇、乙醚及石油醚等有机溶剂。

烟碱对某波段的短波光(即紫外光)具有最大的吸收能力,并且吸光度与烟碱的含量呈正比.因此用水蒸气将烟草样品中的烟碱蒸馏出来,借助于紫外分光度计即可测得待测液中烟碱的浓度,进一步换算出烟碱的含量。

烟碱有剧毒,少量刺激人的中枢神经系统,引起兴奋,并增高血压,大量时能抑制中枢神经系统,使呼吸困难和心脏麻痹.如果一次吸入或内服纯烟碱达40毫克,则可使人致死.但烟碱不会在人体内积累,在体内代谢过程中很快随尿排出体外。

三.烟碱的化学性质1.碱性及成盐作用氮原子的电子层结构是1S22S22P3,最外电子层有3个未成对的P电子.在形成吡啶环时,氮原子外层电子的2S22P1电子轨道发生SP2杂化,形成三个杂化轨道,两个与碳原子形成б键,一个参与了共轭体系,其余两个P电子仍是未共用电子对,能与质子结合,因此吡啶显碱性。

吡啶又是一个叔胺,由于氮原子上存在未共用电子对,环上的电子云也偏向于氮原子,它的碱性(PK b=8.8)比苯胺的碱性(PK b=9.3)强,但比脂肪族胺及氨(CH3-NH2,PK b=3.36;NH3:PK b=4.75)弱的多。

吡咯是一个仲胺.在吡咯环上由于氮原子上的未共用电子对参与了共轭体系,不易与质子结合,吡咯的碱性极弱,比一般仲胺的碱性弱的多.但是烟碱结构中的氢化吡咯为饱和化合物,不存在共轭体系,未共用电子对能与质子结合,具有一般仲胺较强的碱性。

由于烟碱结构中的吡啶环和氢化吡咯环均呈碱性,所以烟碱是碱性化合物,能与多种无机酸,及有机酸,反应生成盐,这些盐大多易溶于水和有机溶剂.例如在烟草生物体内大部分烟碱与草酸、苹果酸、柠檬酸、芳香族酸结合成相应的盐类,叫做结合态烟碱.这种结合态烟碱在碱性条件下会分解,产生游离态烟碱.游离态烟碱的碱性大于结合态烟碱,烟草样品中烟碱含量的常规分析就是根据这种性质,加强碱(NaOH)使烟碱的盐分解为游离态烟碱,再进行蒸馏.烟碱能与无机酸结合生成盐,如在烟碱的工业提取中,就是用盐酸或硫酸吸收烟碱而制取盐酸烟碱或硫酸烟碱。

2.氧化作用.烟碱易被氧化,在空气中会自动氧化成烟酸、氧化烟碱、烟碱烯等.在紫外光作用下转变为烟碱氧化物.受强氧化剂(如浓HNO3、KMnO4等),则转变为烟酸。

N NCH33NCOOH+CH3H2N烟酸羧基的羟基被氨基取代生成烟酰胺N COOHNCONH23.沉淀作用.许多试剂可与烟碱生成沉淀或发生颜色反应,可以用这些试剂来检出烟碱.例如,在酸性条件下,烟碱溶液中加入硅钨酸,生成烟碱的硅钨酸盐白色沉淀,加热静置后形成针状结晶.烟碱的硅钨酸盐在800~850℃的高温下烧灼,剩余下来的不能氧化的是无水硅钨酸残渣,根据化合物的定量比例关系,称其重量即可计算出总烟碱的含量。

2C10H14N2+ SiO2·12WO3·26H2O →SiO2·12WO3·2H20·(C10H14N2)2·5H2O↓+19H2O4.烟碱的亚硝酸反应随着吸烟与健康的深入研究,烟草特有的亚硝胺(TSNA)已受到重视.为了提供对潜在致癌物(TSNA)形成的理解,进行了烟碱和NaNO2反应的研究.在25℃时反应导致N-亚硝基去甲基烟碱(NNN)、4-(N-甲基亚硝胺)-1-(3-吡啶基)-1-丁酮(NNK)和4-(N-甲基亚硝胺)-4-(3-吡啶基)-丁醛(NNA)的生成,产率为0.1~2.8%,绝大部分烟碱没有发生反应.当反应用过量5倍的NaNO2在90℃进行时,有75~85%的烟碱发生反应,亚硝胺NNN和NNK的生成较多,产率可分别高达13.5和4.3%.除烟碱外,其他烟草生物碱也能生成TSNA,如N-亚硝基新烟碱(NAB)和N-亚硝基新烟草碱(NAT)分别来源于新烟碱和新烟草碱。

5.烟碱的稳定性CORESTA 研究了各种储存条件对烟碱降解的影响,结果表明:在储存过程中,高纯度烟碱降解缓慢,例如,将纯度为99%的烟碱储存于冰箱中18个月,纯度降为97%.经测定主要降解的产物为Cotinine和myosmine,实验中测到的最大值为1%,且对烟碱的测定结果影响较小.另外,水是储存过程中的主要污染物质,其含量大约为1%,在校正了水分之后,硅钨酸对纯度高于96%的烟碱可得到最佳测定值.即在这个纯度下,降解产物的干扰可以忽略不计。

相关主题