当前位置:文档之家› 胶团萃取

胶团萃取


B、高聚合物的浓度
❖ 聚合物分相的最低浓度为临界点,系线的长度为零, 此时分配系数为1,即组分均匀的分配于上下相.
❖ 随着成相聚合物的总浓度或聚合物/盐混合物的总浓 度增大,系统远离临界点,系线长度增加,两相性 质的差别(疏水性等)增大,蛋白质分子的分配系数 将偏离临界点处的值(m=1),即大于1或小于1。因 此,成相物质的总浓度越高,系线越长,蛋白质越容 易分配于其中的某一相。
双水相系统(aqueous two-phase system, ATPS)
PEG = 聚已二醇(polyethylene glycol) Kpi = 磷酸钾 DX = 葡聚糖(dextran)
2、双水相萃取的原理
• 是生物物质在双水相体系中的选择性分配,当物 质进入双水相体系后,由于表面性质、电荷作用 和各种作用力(如憎水键、氢键和离子键等)的 存在和环境的影响,使其在上、下相中的浓度不 同,即分配系数不同。
❖ 反之.如pH大于PI,蛋白质在微胶团的溶解 度将很低或不溶。
❖ 但如pH过低。蛋白质会变性,溶解度也下降。
AOT体系中,三种低分子量的在较低PH时,几乎能完 全溶解于反胶团相。不过,PH过低时,蛋白质变性, 溶解度随之降低。显然,对于多中蛋白质自混合物的 分离,只要它们的PH有差异,就可以通过控制溶液的 PH是他们达到分离。
表面活性剂在溶液中开始形成胶团时的浓度称为临 界胶束浓度,简称CMC。当溶液中表面活性剂浓度 低于CMC时,它主要以单体形式,即分子或离子形 式存在。 表面活性剂形成胶团后,溶液的许多物理化学质, 如表面张力、摩尔电导率、渗透压、密度、增溶性 能等,在一个很窄的浓度范围内呈现不连续变化。

胶团分为正(向)胶 团和反(向)胶团。
四、 反胶团萃取的应用
❖ 分离蛋白质混合物; ❖ 浓缩α-淀粉酶; ❖ 从发酵液中提取胞外酶 ; ❖ 直接提取胞内酶; ❖ 用于蛋白质复性。
反胶团萃取在生物样品分离中的应用
表示核糖核酸酶、溶菌酶和细胞色素C 蛋白质混合溶液约分离过程。在pH =9时.核糖核酸酶不溶.而其他两种酶可溶,故在pH=9,[KCl]= 0.1mol/L时.核糖核酸酶只留在水相中.而溶菌酶和细胞色素C则完全溶 于反相微胶团中。再将含有溶菌酶和细胞色素C有机相与0.5mol/LKCl的水 相接触.细胞色素C转入水相。最后将含有溶茵酶的有机相与含有 2.0mol/LKCl.pH=11.5的水溶液混合,就可将溶菌酶转入到水相中,这样 就达到了三种蛋白质分离约目的。
第三节 双水相萃取
❖ 双水相体系的形成与分配机理 ❖ 双水相的相图 ❖ 双水相萃取体系的影响因素 ❖ 双水相萃取的应用
3.1双水相体系的形成与分配机理
双水相萃取?
利用物质在互不相溶的两水相间分配系数的 差异来进行萃取的方法。
双水相的形成
将两种不同的水溶性聚合物的水溶液混合时,当聚合 物浓度达到一定值,体系会自然的分成互不相溶的两相, 这就是双水相体系。这种含有不同聚合物分子的溶液发生 分相的现象叫聚合物的不相容性。
(2) 盐类
盐的种类和浓度对分配系数的影响主要反 映在对相间电位和蛋白质疏水性的影响。
①盐的种类
❖ 在双聚合物系统中,无机离子具有各自的分配系 数,不同电解质的正负离子的分配系数不同,从 而产生不同的相间电位。由于各相要保持电中性, 使得带电生物大分子,如蛋白质和核酸等分别向 两相移动分配。
②盐的浓度
萃取过程
第五章 萃取分离法
第五章 萃取分离法
影响超临界流体萃取的因素 压力:压力大,密度大,溶解力强; 温度:复杂,先升高后降低。 超临界流体的性质和被萃取物的极
性:CO2极性小,对于极性大的物质的萃 取,必须加入添加剂,称为提携剂或改 性剂。 流量:扩散慢的溶质流量不宜大。
第五章 萃取分离法
❖ 盐的浓度不仅影响蛋白质的表面疏水性, 而且扰乱双水相系统,改变各相中成相物 质的组成和相体积比。
❖ 例如,PEG/磷酸盐体系中上下相的PEG和磷酸盐 浓度及Cl-在上下相中的分配平衡随添加NaCl浓 度的增大而改变,这种相组成即相性质的改变直 接影响蛋白质的分配系数。
❖ 离子强度对不同蛋白质的影响程度不同,利用这 一特点,通过调节双水相系统的盐浓度,可有效 地萃取分离不同的蛋白质。
❖ 目前研究中常用的AOT反胶束体系和其他体系有许 多不足:如不能用于分子量较大的蛋白质的萃取和 往往在两相界面上形成不溶性的膜状物等等。为克 服这些不足,可通过在单一表面活性剂中加入具有 亲和作用的生物表面活性剂或另一种非离子型表面 活性剂的方法来改善萃取性能。
2、水相pH值对萃取的影响
❖ 蛋白质是一种两性物质,具有确定的等电点 (pI).
3、离子强度
❖ 水相盐浓度(离子强度)决定了带电荷的反胶 团的内表面以及带电荷的蛋白质分子表面被静 电屏蔽的程度。离子强度增加时,增大了离子 向反胶束内“水池”的迁移并取代其中蛋白质 的倾向,使蛋白质从反胶束内被盐析出来.因此, 低的离子强度有利于蛋白质的萃取,高的离子 强度有利于蛋白质的反萃取。
形成原因:由于高聚物之间的不相溶性,即高聚物分子 的空间阻碍作用,相互无法渗透,不能形成均一相,从而 具有分离倾向,在一定条件下即可分为二相。
常用的双水相体系
高聚物/高聚物体系:聚乙二醇(简称PEG) / 葡聚糖(简称Dextran) 高聚物/无机盐体系: 硫酸盐体系。常见的高聚物/ 无机盐体系: PEG/ 硫酸盐或磷酸盐体系。
持活性。
二、反胶团萃取原理
由于周围水层和极性基团的保护,保持了蛋白 质的天然构型,不会造成失活。
(a)水壳模型;(b)插入模型

(c)吸附模型;(d)溶解模型







❖ 蛋白质进入反胶团溶液是一协同过程。在有 机溶剂相和水相两宏观相界面间的表面活性 剂层 ,同邻近的蛋白质分子发生静电吸引而变 形 ,接着两界面形成含有蛋白质的反胶团 ,然 后扩散到有机相中 ,从而实现了蛋白质的萃取。 (可能机理)
原料颗粒的粒度:原料的颗粒度小,利于 萃取,但太小会出现堵塞或结块造成沟 流等不利现象;
萃取时间:增加萃取强度,可以缩短时间。 可能的机理是组分之间的“溶解互助” 效应,即先萃取出来的物质起到改性剂 的作用,增加了溶解能力。
第五章 萃取分离法
超临界流体萃取的应用
中药有效成分的提取。植物原料,生物碱、黄酮、 有机酸、皂苷、萜类、挥发油、糖类、油脂、氨 基酸、色素、鞣质、蛋白质、酶等,传统方法复 杂,流程长,SPE简单快速效率高。
【表面活性剂】在水或有机溶剂中自发形
成的聚集体。
胶团的形成——当向水溶液中加入表面活
性剂达到一定浓度时就会形成表面活性剂 聚集体,即胶团。
❖ 表面活性剂——是由亲水憎油的极性基团 和亲油憎水的非极性基团两部分组成的两 性分子。
❖ 表面活性剂的分类:
阴离子表面活性剂;阳离子表面活性剂; 非离子型表面活性剂。
(3)在贵金属分离中的应用
例如采用PEG2000-硫酸铵-偶氮胂双水相体系可以 分离Ti和Zr。
第五章 萃取分离法
5.4 超临界流体萃取
压力增大,P(Mpa)
supercritical fluid

liquid
流动相密

度增加,
solid

溶剂力增
gas



T(oC)

临界点附近温度和压力的微小变化会引起密 度的显著变化,即溶解能力的显著变化。
正胶团是在极性溶液中形成的,
其亲水性的极性端向外指向极
性(如水)溶液,疏水性的非
极性“尾”向内相互聚集在一
起。
非极性的
“核”
极性“头” 非极性“尾”
非极性有 机溶剂
反胶团 是两性表面活性剂
在非极性有机溶剂中亲Βιβλιοθήκη 性基团自发地向内聚集而成的,
内含微小水滴。其疏水性的
非极性尾部向外,指向非极
性溶剂,而极性头向内,与
(5)低分子量化合物 (6)双水相体系的性质
黏度、两相密度差、表面张力、相间电势差、相分离 时间。
双水相萃取的应用
(1)在生物工程领域的应用
主要应用于生物物质,如酶、核酸、生长激素、 病毒等的分离纯化。常用的是PEG-葡聚糖双水相 体系。
(2)在中草药有效成分分离中的应用
例如采用PEG6000-K2HPO4双水相体系分离中草药 中的黄岑苷和黄岑素。
胶团萃取
一、基本概念
胶团萃取——是被萃取物以胶团或者胶体形式从
水相被萃取到有机相的溶剂萃取方法。它既可用于 无机物的萃取,也可用于有机物的萃取。 ❖ 在无机物的方面:金属或其无机盐可以形成疏水胶 体粒子粒子进入有机相。 ❖ 被萃取物主要限于金、银、硫酸钡等, 溶剂主要限于氯仿、四氯化碳和乙醚等。
胶团——是双亲(即亲水又亲油)物质
双节线:把均相区和两相区域分隔开。 系线:连接双节线上两点的直线。
两相区
均相区
在同一条系线上的各点分成的两相具有相同的组成, 但体积比不同
临界点:当系线长度趋向于零时,即在图中的C点, 两相差别消失,任何溶质在两相中的分配系数均为 1,成为单相体系。
ATPS相图
双节线(bi-nodal):
图中的曲线。双节线以下的区域为均相区, 以上的区域为两相区,即ATPS 。
双水相萃取体系的影响因素
(1)高聚合物的分子量和浓度
A、高聚合物分子量
对于PEG/Dextran所形成的双水 相体系中,若降低PEG相对分子质量, 则生物分子分配于富含PEG的上相中, 使分配系数增大;而降低Dextran相 对分子质量,则分配系数减小。
若想在上相获得较高的蛋白质收 率,对于PEG聚合物,应降低它的平 均分子量,相反,若想在下相获得较 高的蛋白质收率,则平均分子量应增 加。
相关主题