第四节通风机的实际特性曲线第四节通风机的实际特性曲线一、通风机的工作参数表示通风机性能的主要参数是风压H、风量Q、风机轴功率N、效率 和转速n等。
(一)风机(实际)流量Q风机的实际流量一般是指实际时间内通过风机入口空气的体积,亦称体积流量(无特殊说明时均指在标准状态下),单位为,或。
(二)风机(实际)全压H f与静压H s通风机的全压H t是通风机对空气作功,消耗于每1m3空气的能量(N·m/m3或Pa),其值为风机出口风流的全压与入口风流全压之差。
在忽略自然风压时,H t用以克服通风管网阻力h R和风机出口动能损失h v,即H t=h R+h V, 4—4—1克服管网通风阻力的风压称为通风机的静压H S,PaH S=h R=RQ24-4-2因此H t=H S+h V 4-4-3(三)通风机的功率通风机的输出功率(又称空气功率)以全压计算时称全压功率N t,用下式计算:N t=H t Q×10-3 4—5—4用风机静压计算输出功率,称为静压功率N S,即N S=H S Q×10—3 4-4-5因此,风机的轴功率,即通风机的输入功率N(kW),4—5—6或 4-4-7式中ηt、ηS分别为风机折全压和静压效率。
设电动机的效率为ηm,传动效率为ηtr时,电动机的输入功率为N m,则4-4-8二、通风系统主要参数关系和风机房水柱计(压差计)示值含义掌握矿井主要通风机与通风系统参数之间关系,对于矿井通风的科学管理至关重要。
为了指示主要通风机运转以及通风系统的状况,在风硐中靠近风机入口、风流稳定断面上安装测静压探头,通过胶管与风机房中水柱计或压差计(仪)相连接,测得所在断面上风流的相对静压h。
在离心式通风机测压探头应安装在立闸门的外侧。
水柱计或压差计的示值与通风机压力和矿井阻力之间存在什么关系?它对于通风管理有什么实际意义?下面就此进行讨论。
1、抽出式通风1)水柱(压差)计示值与矿井通风阻力和风机静压之间关系如图4-4-1,水柱计示值为4断面相对静压h4,h4(负压)=P4-P04(P4为4断面绝对压力,P04为与4断面同标高的大气压力)。
图4—4—1沿风流方向,对1、4两断面列伯努力方程h R14=(P1+h v1+ρm12gZ12)- (P4+h v4+ρm34gZ34)式中h R14—1至4断面通风阻力,Pa ;P1、P4—分别为1、4断面压力,Pa;h v1、h v4—分别为1、4断面动压,Pa;Z12、Z34—分别为12、34段高差,m;ρm12、ρm34—分别为12、34段空气柱空气密度平均值,kg/m3;因风流入口断面全压P t1等于大气压力P01,即P1+h v1=P t1=P01,又因1与4断面同标高,故1断面的同标高大气压P01’与4断面外大气压P04相等。
又ρm12gZ12’—ρm34gZ34=H N故上式可写为h R14=P04-P4-h v4+H Nh R14=|h4|-h v4+H N即 |h4|=h R14+h v4-H N4-4-9根据通风机静压与矿井阻力之间的关系可得H S+H N =|h4|—h v4=h t4 4-4-10式4-4-9和式4—4—10,反映了风机房水柱计测值h4与矿井通风系统阻力、通风机静压及自然风压之间的关系。
通常h v4数值不大,某一段时间内变化较小,H N随季节变化,一般矿井,其值不大,因此,|h4|基本上反映了矿井通风阻力大小和通风机静压大小。
如果矿井的主要进回风道发生冒顶堵塞,则水柱计读数增大;如果控制通风系统的主要风门开启。
风流短路,则水柱计读数减小,因此,它是通风管理的重要监测手段。
2)风机房水柱计示值与全压H t之间关系。
与上述类似地对4、5断面(扩散器出口)列伯努力方程,便可得水柱计示值与全压之间关系H t =|h4|—h v4+h R d+h v5即|h4|=H t+h v4-h R d-h v5 4—4—11式中h R d——扩散器阻力,Pa ;h v5——扩散器出口动压,Pa;根据式4—4—11可得H t=h R12+ h R d+h v4H t+H N=h R14+ h R d+h v54—4—122、压入式通风的系统如图4-4-2,对1、2两断面列伯努力方程得:h R12=(P1+h v1+ρm1gZ1)-(P2+h v2+ρm2gZ2)因风井出口风流静压等于大气压,即P2=P02;1、2断面同标高,其同标高的大气压相等,即P01-P02,故P1-P2= P1-P01=h1又ρm1gZ1-ρm2gZ2=H N故上式可写为h R12=h1+h V1-h v2+H N所以风机房水柱计值h1=h R12+h v2-h V1-H N又H t=P t1-P t1’=P t1-P0=P1+h v1-P0=h1+h v1H t+H N=h R12+h v24—4—13由式4—4—12和式4—4—13可见,无论何种通风方式,通风动力都是克服风道的阻力和出口动能损失,不过抽出式通风的动能损失在扩散器出口,而压入式通风时出口动能损失在出风井口,两者数值上可能不等,但物理意义相同。
图4—4—2三、通风机的个体特性曲线当风机以某一转速、在风阻R的管网上工作时、可测算出一组工作参数风压H、风量Q、功率N、和效率η,这就是该风机在管网风阻为R时的工况点。
改变管网的风阻,便可得到另一组相应的工作参数,通过多次改变管网风阻,可得到一系列工况参数。
将这些参数对应描绘在以Q为横坐标,以H、N和η为纵坐标的直角坐标系上,并用光滑曲线分别把同名参数点连结起来,即得H─Q、N─Q和η─Q曲线,这组曲线称为通风机在该转速条件下的个体特性曲线。
有时为了使用方便,仅采用风机静压特性曲线(HS─Q)。
为了减少风机的出口动压损失,抽出式通风时主要通机的出口均外接扩散器。
通常把外接扩散器看作通风机的组成部分,总称之为通风机装置。
通风机装置的全压Ht为扩散器出口与风机入口风流的全压之差,与风机的全压Ht之关系为4-4-14式中 h d━━扩散器阻力。
通风机装置静压Hsd因扩散器的结构形式和规格不同而有变化,严格地说4-4-15式中 h Vd━─扩散器出口动压。
轴流式通风机的叶片装置角不太大时,在稳定工作段内,功率N随Q增加而减小。
所以轴流式通风机应在风阻最小时启动,以减少启动负荷。
图5-4-4 轴流式个体特性曲线图5-4-5 离心式通风机个体特性曲线在产品样本中,大、中型矿井轴流式通风机给出的大多是静压特性曲线;而离心式通风机大多是全压特性曲线。
对于叶片安装角度可调的轴流式通风机的特性曲线,通常以图4-7-2的形式给出,H─Q曲线只画出最大风压点右边单调下降部分,且把不同安装角度的特性曲线画在同一坐标上,效率曲线是以等效率曲线的形式给出。
四、无因次系数与类型特性曲线目前风机种类较多,同一系列的产品有许多不同的叶轮直径,同一直径的产品又有不同的转速。
如果仅仅用个体特性曲线表示各种通风机性能,就显得过于复杂。
还有,在设计大型风机时,首先必须进行模型实验。
那么模型和实物之间应保持什么关系?如何把模型的性能参数换算成实物的性能参数?这些问题都要进行讨论。
(一)无因次系数⒈通风机的相似条件两个通风机相似是指气体在风机内流动过程相似,或者说它们之间在任一对应点的同名物理量之比保持常数,这些常数叫相似常数或比例系数。
同一系列风机在相应工况点的流动是彼此相似的,几何相似是风机相似的必要条件,动力相似则是相似风机的充要条件,满足动力相似的条件是雷诺数Re(=)和欧拉数E u=()分别相等。
同系列风机在相似的工况点符合动力相似的充要条件。
2、无因次系数无因次系数主要有:(1)压力系数同系列风机在相似工况点的全压和静压系数均为一常数。
可用下式表示:, 4-4-16或 4-4-17式中和叫全压系数和静压系数。
为压力系数,u为圆周速度。
(2)流量系数由几何相似和运动相似可以推得4-4-18式中 D、u、—分别表示两台相似风机的叶论外缘直径、圆周速度,同系列风机的流量系数相等。
(3)功率系数风机轴功率计算公式中的H和Q分别用式4-4-17和式4-4-18代入得4-4-19同系列风机在相似工况点的效率相等,功率系数为常数。
、、三个参数都不含有因次,因此叫无因次系数。
(二)类型特性曲线、、和η可用相似风机的模型试验获得,根据风机模型的几何尺寸、实验条件及实验时所得的工况参数Q、H、N和η。
利用式4-4-17、4-4-18和4-4-19计算出该系列风机的、、和η。
然后以为横坐标,以、和η为纵坐标,绘出-、-和η-曲线,此曲线即为该系列风机的类型特性曲线,亦叫通风机的无因次特性曲线和抽象特性曲线。
图4-4-6和力图4-4-7分别为4-72-11和G4-73-11型离心式通风机的类型曲线,2K60型类型风机的类型曲线如图4-7-2(a)、(b)所示。
可根据类型曲线和风机直径、转速换算得到个体特性曲线。
需要指出的是,对于同一系列风机,当几何尺寸(D)相差较大时,在加工和制造过程中很难保证流道表面相对粗糙度、叶片厚度以及机壳间隙等参数完全相似,为了避免因尺寸相差较大而造成误差,所以有些风机(4-72-11系列)的类型曲线有多条,可按不同直径尺寸而选用。
图4—4—6 图4—4—7五、比例定律与通用特性曲线1、比例定律可见,同类型风机在相似工况点的无因次系数、、和两个相似风机而言,、、,所以其压力、风量和4-4-204-4-214-4-22风量2、通用特性曲线为了便于使用,根据比例定律,把一个系列产品的性能参数,如压力H、风量Q、和转速n、直径D、功率N和效率η等相互关系同画在一个坐标图上,这种曲线叫通用特性曲线。
图4-7-3为G4--73系列离心式通风机的对数坐标曲线,在对数坐标图中,风阻R曲线为直线,与Q轴夹角为63.°,与机号线平行,大大简化了作风阻曲线的步骤。