解读《限制性核酸内切酶应用的考点例析》
我们知道限制性核酸内切酶(限制酶)是指能识别DNA中特定碱基顺序,并在特定位点切割双链DNA的核酸内切酶。
它在生物学中应用相当广泛,是基因工程中的工具酶,用来构建重组DNA分子,对于遗传性疾病的基因定位和基因诊断的研究也具有重要的应用价值。
下面我们以问题的形式简要地了解它在这些方面的应用。
1。
限制酶的特点
例1.下面哪项不具有限制酶识别序列的特征()
A.GAATTC B.GGGGCCCC C.CTGCAG D.CTAAATC CTTAAG CCCCGGGG GACGTC GATTTAG
解析:限制酶识别的各种序具有回文对称的特点。
所谓回文对称序列就是当以不同的方向分别阅读DNA的两条互补链时,DNA的两条链上的碱基序列相同。
如A中的DNA分子,其中一条链从左向右阅读碱基序列是GAA TTC,另一条互补链从右向左阅读碱基序列也是GAATTC。
答案:D
例2.限制酶HindⅢ酶切DNA的识别序列是AAGCTT,限制酶HpaⅡ酶切DNA的识别序列是CCGG。
假定DNA分子中A、T、G、C所含的比例相等,那么,限制酶HindⅢ酶切割双链DNA的概率是,酶切位点间的平均距离约kb(千碱基);限制酶HpaⅡ酶切割双链DNA的概率是,酶切位点间的平均距离约kb。
解析:因为限制酶识别序列具有回文对称序列的特点,这两个序列在相应的互补链上又会呈现,因此我们只需考虑DNA的一条链即可。
六碱基长HindⅢ识别序列AAGCTT出现的概率是(1/4)6或1/4096,因此HindⅢ酶切位点之间的平均距离大约为4 kb。
同样的道理,4碱基长的HpaⅡ酶识别序列CCGG出现的概率是(1/4)4或1/256,因此HpaⅡ酶切位点的平均距离大约为0.25 kb。
2.黏性末端与限制酶类型的关系
例3.用同一种限制酶处理会产生相同的黏性末端,但用不同的限制酶处理也可能产生相同的黏性末端。
下列所示的四个黏性末端是由()种限制酶作用产生的。
解析:不同的限制酶的识别序列和切割位点不同。
要判断题中的4个黏性末端是由几种限制酶作用下产生的,不光要看共有几种黏性末端,更重要的是要看作用产生这些黏性末端的限制酶的识别序列和切割位点是否相同。
经过分析,题中4幅图所示的黏性末端应该分别是由4种限制酶作用产生的,这4种酶的识别序列及切割位点依次是:G↓AATTC,C↓AA TTG,G↓TTAAC,C↓TTAAG。
答案:4
3.限制酶图谱分析
例4.一线性DNA分子分别用限制酶HindⅢ和SmaⅠ消化,然后用这两种酶混合消化,得到如下片段:
HindⅢ 2.5 kb,5.0 kb
SmaⅠ 2.0 kb,5.5 kb
HindⅢ和SmaⅠ 2.5 kb,3.0 kb,2.0 kb
(1)画出此丝性DNA分子的限制酶图谱。
(2)两酶混合消化的片段再用限制酶EcoRⅠ消化,结果导致凝胶上3.0 kb的片段消失,产
生一个1.5 kb的新片段。
请标出限制酶EcoRⅠ在限制酶图谱上的切割位点。
解析:(1)用限制酶HindⅢ消化DNA得到2.5 kb与5.0 kb两个片段,如果加入双酶HindⅢ和SmaⅠ得到2.5 kb,3.0 kb,2.0 kb三个片段,这说明限制酶SmaⅠ能将HindⅢ消化DNA得到5.0 kb片段切割为3.0 kb和2.0 kb片段。
据此,可画出如下限制酶图谱。
(2)因为只有3.0 kb的片段消失,并且生成一个新的1.5 kb的片段,表明此片段有一个EcoRⅠ酶切位点,且位于此片段的中央。
3.0 kb的片段被限制酶EcoRⅠ切成2个等长1.5 kb的片段,在凝胶上显示出一个1.5 kb的新片段。
例4.今用PCR方法扩增了一2kb的DNA片段,纯化后用限制酶EcoRⅠ和HindⅢ单独消化,然后混合消化,凝胶电泳分离,结果如下。
EcoRⅠ150bp,500 bp,1250 bp,100 bp
HindⅢ350 bp,650 bp,1000 bp
EcoRⅠ和HindⅢ100bp ,150 bp ,200bp,300bp,350bp,900 bp
根据以上数据,构建此DNA片段的限制酶图谱。
解析:双酶消化表明,1250 bpEcoRⅠ酶切片段中含有一个HindⅢ酶切位点(产生350bp 和900 bp两个片段),500bpEcoRⅠ酶切片段含有一个HindⅢ酶切位点(产生200kbp和300bp 两个片段);350bp,650bp和1000bpHindⅢ酶切片段各有一个EcoRⅠ酶切位点。
根据以上分析,可画出如下限制酶图谱。
4.基因诊断
例6.一对等位基因经某种限制酶切割后形成的DNA片段长度存在差异,凝胶电泳分离限制酶切割的DNA片段,与探针杂交后可显示出不同的带谱(如图Ⅰ所示)。
根据该特性,就能将它作为标记定位在基因组的某一位置上。
现有一对夫妇生了四个儿女,其中1号性状表现特殊(如图Ⅱ)。
由此可推知四个女儿的基因型(用D、d表示一对等位基因)正确的是()
A.1号为X d X d者B.2号为X D Y C.3号为Dd D.4号为DD或Dd
解析:不含有特殊性状的双亲生出性状表现特殊的1,且为女性,由此可见该特殊性状是隐性的,并位于常染色体上,1号为dd,双亲均为Dd。
从给出的“带谱”显示可知,杂合体显示的DNA片段是一长一短(长/短)的,而纯合体是两长(长/长)或两短(短/短)。
1是隐性纯合显示为短,则显性显示的带谱为长。
双亲为杂合子(Dd),其等位基因限制酶切后,凝胶电泳分离与探针杂交显示两条不同长度DNA片段(长/短)的带谱。
其“杂合性片段”完全像基因一样,呈孟德尔式遗传。
可写为:
亲本:长/短×长/短
↓
子女:1/4长/长2/4长/短1/4短/短
结合后代带谱的显示可判断:子女中1号为短/短(dd),2号为长/长(DD),3号为长/短(Dd),4号为长/长(DD)。
答案:C。