当前位置:文档之家› 微气泡的消除

微气泡的消除

气泡的种类在实际生产过程中所产生的气泡不外乎是物理气泡与化学气泡,即由于物料中的游离水份与化学反应所产生的.而能在产品中残存的气泡来源,一是未澄清完全所留存在玻璃液中的一次气泡,二是因"重沸"而产生的二次气泡.工艺控制的理论依据①消除一次气泡的理论依据众所周知,对于同一料方的配料来说,玻璃液的澄清过程受诸多因素的影响:能产生澄清气体的原料成份能否集中分解并释放出澄清气体;熔体中的溶解气体能否快速析出;澄清流起点处含气泡的深层液流能否顺利上行排泡;以及澄清温度,时间,外界压力等.与此同时,已形成的极微小的来不及上浮逸出的气泡能否重新溶于玻璃液而消失.浮法玻璃生产通常使用的澄清剂为芒硝,芒硝在物料熔化过程中有如下的一些性质:芒硝的热还原反应:①Na2SO4+2C→Na2S+2CO2↑(400℃开始,500℃反应激烈)②Na2S+Na2SO4+2SiO2→2Na2SiO3+SO2↑+S↑(865℃)③2Na2SO4→2Na2O+2SO2↑+O2↑(1200℃~~1300℃)④2Na2SO4+2SiO2+C→2Na2SiO3+CO2↑+2SO2↑(720℃~~1000℃)首先,在正常状态下,温度越高,反应越剧烈,单位时间内放出的气体愈多.其次,芒硝在高温时分解放出SO2、CO2,芒硝成份中的SO3溶于玻璃液,而其还原产物SO2则几乎完全不溶于玻璃液,同时在熔化温度范围内SO2的溶解度随氧化气氛的增强而增大.基于上述芒硝的性质,如果我们在生产操作中能使大部分芒硝的热还原反应集中于某一区域,反应产物气体SO2、CO2就会集中地大量析出,这样,在气泡中气体分压及熔体表面张力的作用下,不仅能使熔体中的多种气体加速扩散到富集SO2的泡中,使气泡迅速长大,使气泡在增大了的浮力作用下,加快上行并拉动下层熔体快速上行,使深层气泡亦上升至玻璃液表面.操作者若同时控制上述区域的温度及环境压力,使上浮至液面表层的气泡快速逃逸,气泡的上浮澄清过程将圆满完成.②二次气泡产生的机理对于二次气泡产生的机理及生产实例已有大量的文献与资料报道,本文强调一点,即避免已溶入玻璃液的气体成份重新析出或反应生成气体而析出,在正常的生产情况下,外界因素造成玻璃液被重新加热或气氛条件突变而放出气体的情况是不会出现的,只有熔化部的澄清回流(或者说环流)及冷却部的生产回流才能造成玻璃液的重新被加热或故障因素造成气氛突变,使熔体内物质重新发生反应而放出气体.实际生产中的控制根据上述分析,我们在实际生产操作中做了如下调整:对于熔化工艺前段的控制,打破了以往的传统,避免芒硝在熔化初期过早大量分解,使后期芒硝澄清作用不足产生气泡.温度制度及风油比的调整见表从表不难看出:主要化料区的火焰气氛由调整前的还原性改为氧化性,而调整前热点处由氧化性改为还原性,这就符合了完全澄清所要求的化料区氧化气氛,抑制了芒硝分解.仅使少部分芒硝参加助熔作用,大部分以SO3形式溶于玻璃液中,热点区的还原气氛及高温降低了SO3的溶解度,使含有大量SO3的熔体进入热点区时,由于熔化所处的还原气氛及温度的影响,增大了SO3溶解的饱和倾向,热点区的高温又使SO3的分解倾向加大,最终使SO3在热点区域得以快速分离并分解,从而实现了相对集中放出澄清气体SO2及CO2的目的.由于放出的SO2、CO2气体几乎不溶于玻璃液,这样就使气体的成核,长大,浮力增加及上升得以快速实现.而适当提高的热点温度及上述释放出的大量SO2、CO2气体更容易使热点处深层含气泡的熔体上升,得以澄清.以SO2为主的气泡在合并,上升过程中由于泡内各种气体的分压平衡被连续破坏,就使溶解在熔体中的其他气体不断地渗析到这个气泡中,使熔体中的其他气体含量快速减少,配合气氛分段控制,对各小炉下废气抽力闸板的开度,即各小炉的排气量作了相应的理论计算和实际调整,按蓄热室热平衡表达式(如下)来控制,更完全地实现澄清的目的.燃料流量&分烟道闸板开度助燃空气量&最大烟气温度一般情况下,对每个小炉来说,$值相对接近.而热点后区火焰气氛又变为氧化性,增大了SO2在玻璃液中的溶解度,使在热点区未分解的残余SO2重新溶解在玻璃液当中,微小的来不及上浮逸出的小气泡随温度的降低亦重新溶于玻璃液当中,彻底实现澄清的目的.其次,由于化料区温度,热点温度及未对小炉温度适当提高,不仅增大了化料速度,使热点前移,相应地增大了澄清面积,从而增加了澄清时间,同时也增加了玻璃液的澄清温度,有利于一次气泡的澄清.与此同时,上述调整使热点前移,拉长了热点至熔化部末端的距离(由于目前的熔窑大都采用了窄长脖与深水水包,使熔化部的澄清环流与冷却部的生产环流有效地被分开,避免了冷却部的环流返回到熔化部中去),有效地减小此段玻璃液沿流向在单位长度内的温度梯度,降低了澄清环流的强度.由于熔化部澄清环流强度的降低,使进入卡脖的玻璃液流量随之降低,从而使冷却部的生产环流亦有所降低.上述两大环流强度的降低,有效地使返向流减弱,避免了返向流中的"凉"玻璃液返回高温区被重新加热,导致气体溶解度等的一系列变化而释放出"二次"气体,形成气泡.这一点,从池底温度的变化可以说明两大环流的减弱.各部池底温度见表经过上述一系列的调整,玻璃板中气泡尺寸及数量发生了较大的改观,数据见表'.玻璃实物等级由建筑级和加工级提高为以制镜级为主的优质浮法玻璃.结束语由于大规模浮法玻璃生产操作,不可能完全实现理想控制状态,但通过上述一系列的在线工艺控制手段,可以使芒硝充分发挥其澄清效能.同时,在熔化初期,芒硝与碳粉在一定气氛下反应而生成的过渡产物Na2S:对物料颗粒的浸润而加速物料熔化的作用,从而使整个熔化过程变短,其增加澄清时间的作用机理,即还原性硫澄清机理的在线应用有待进一步讨论.1、由于铁的变化,玻璃液透热性的变化,容易导致池底温度的变化和池底不动层的变化,很容易导致气泡和夹杂物的产生,特别在换色期间。

虽然颜色已经达到要求,但是由于池底不动层的交换缓慢,时间较长,必须采取其他措施加强置换。

灰玻的铁含量较高,福特兰的铁含量应该低一点,池底不动层会薄一点,如换色期间使用的是白玻时间不长,那池底不动层交换不够,很容易导致气泡和夹杂物的产生。

减少浮法玻璃气泡的几点体会1、存在问题:①硅砂水分波动大。

②配合料中所加的碎玻璃不均匀。

③窑内温度波动大。

热点温度波动达20℃以上。

④窑内温度制度不合理,未能充分利用1#小炉加热作用。

⑤火焰长度不够,生料溜边现象严重。

2、采取措施:①控制硅砂水分,水分波动0.2%即调料,提高配合料成分准确。

②配合料与加入碎玻璃均匀。

③加大1、2小炉热量:123456调整前1920.321.522.5~2316.5~170调整后2120.321.520.5~2116.5~1701、2小炉火焰原先长度只有窑宽50~60,调整后为窑宽的70以上。

4小炉原先过长,调整后正常。

效果:泡界线回缩0.5~1米,线外漂浮物减少。

④设置卡脖深层水包(300毫米以下):可以提高澄清温度,减少能耗,降低流液道温度,避免玻璃液重热形成微泡。

用吸收法消除玻璃中气泡的经验摘要:根据气体在玻璃液中的溶解度与温度成反比的理论,讨论了窑炉结构及工艺条件对消除气泡的影响,找出了窑炉熔化温度,出料量与气泡数量间的平衡关系,用以指导生产.关键词:玻璃瓶;高白料;气泡;吸收法气泡是玻璃中的常见缺陷,其产生的原因很多,有熔化能力不足,温度不够造成的,有澄清不良消除不掉的,也有耐火材料产生的,还有成型时供料操作不当带来的.本文讨论我公司1号玻璃窑炉生产高白料玻璃瓶时消除气泡的做法.气泡的产生及消除过程1号玻璃窑炉是座燃煤蓄热室马蹄焰池炉.在设计上采用小动量比,倾斜底板小炉结构,深澄清池,倾斜上升式流液洞与上升料道,无工作池,该窑炉冷修改造后生产高白料玻璃瓶,投产后发现制品上带有气泡,有圆形的,椭圆形的和表面薄皮气泡,数量0个23/!左右,严重影响产品外观质量.起初,我们按"排出法"的思路采取措施:提高熔化温度,降低熔化率,将火焰空间辐射温度逐步提高,出料量也降低,结果气泡数量增加到523/!,直径增大薄皮气泡增多;提高配合料气体率,加大澄清剂用量,气体率提高,但气泡并未减少;加大助熔剂的引入量,仍无明显效果.面对制品上越来越多的气泡,我们意识到“吸收法”的思路才可能是正确的.于是,将熔化温度降低后气泡数量减少。

后又降到0个23/!,接着改进加料机实现薄层裹入式加料,继续降低熔化温度,出料量控制合适,最终气泡数量稳定,直径减小。

:玻璃熔制工艺中气泡消除机理熔制过程是一个复杂的物理化学反应过程,包含硅酸盐形成阶段,玻璃形成阶段,澄清均化阶段,其中澄清阶段是气泡消除的过程.在这一过程中随温度升高玻璃液粘度降低,气泡中的气体,窑内气体与玻璃液中物理溶解和化学结合的气体之间建立平衡,再使可见气泡漂浮于玻璃液面加以消除.在澄清过程中可见气泡的消除按下列两种方式进行:1气泡体积增大加速上升,漂浮出玻璃表面后破裂消失.2小气泡中的气体组份溶解于玻璃液中,气泡被吸收而消失.气泡的大小和玻璃液的粘度是气泡能否漂浮的决定因素.根据斯托克斯定律,气泡的上升速度与气泡的半径平方成正比,而与玻璃液粘度成反比.根据高白料玻璃的成分计算玻璃液在不同温度下的粘度,并与我公司一翠绿玻璃配方相比较.以澄清位置的玻璃液温度,气泡上浮距离计算不同直径气泡的上浮时间.提高熔化温度可增加直径0.2mm以上气泡的上浮速度,减少上浮所需要时间,但对直径在0.2mm以下的气泡则很难通过上浮而消除,必须通过对温度进行调节使小气泡在玻璃液中被吸收而消除.在玻璃液降温过程中,由于气体变冷,气体压力不变的情况下气泡将变小.由于玻璃表面张力的原因,气泡内压力因半径的减小而增大,降温时,玻璃液中气体的饱和压力低于气泡内气体的压力,气泡内的气体释散到玻璃液中.由于放出了气体,气泡半径又减小,玻璃液表面张力使气泡内压力进一步增高,直到最后气泡完全被玻璃液所吸收.玻璃液在澄清过程中,大气泡排出与小气泡吸收这两个阶段是必不可少的,前者要求必要的温度和持续时间,后者需要一定的温降梯度,如果这些条件有一项达不到就会使制品带上气泡.窑炉结构及所给出的工艺条件对消除气泡的影响1.窑炉结构该窑炉结构有两个特点:一是大倾角小动量比的小炉结构,二是下沉的深澄清池结构.这种结构使火焰有较高的速度和刚性,火焰紧贴玻璃液面,对料堆有一个向前的推力.据测量,当熔化温度不足,出料量偏大时,料堆移后,有的配合料还未完全熔化就到了澄清部,占用了澄清时间,使澄清不充分,本该排出的气泡留在了玻璃液中进入了冷却阶段.制品上直径0.2mm以上的气泡就是这样形成的.不同直径气泡上浮速度和所需时间不一样。

相关主题