磁场和安培力专题无锡智学堂教育备课组磁感应强度安培力体验成功1.关于磁场和磁感线,下列叙述正确的是()A.磁感线可以形象地描述磁场的强弱和方向,其每一点的磁场方向在该处的切线方向上B.磁极间的相互作用是通过磁场产生的C.磁感线总是从磁体的N极指向S极D.磁感线就是磁场中碎铁屑磁化后排列成的曲线解析:磁感线的相对疏密可以表示磁场的强弱,切线方向为磁场的方向,选项A正确;这是磁场的基本特性,选项B正确;在磁体内部,磁感线由S极指向N极,选项C错误;磁感线是虚拟的、不存在的,是为形象地描述磁感应强度而引入的,选项D错误.答案:AB2.在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针的N极向东偏转,由此可知()A.一定是小磁针正东方向有一条形磁铁的N极靠近小磁针B.可能是小磁针正东方向有一条形磁铁的S极靠近小磁针C.可能是小磁针正上方有电子流自南向北水平通过D.可能是小磁针正上方有电子流自北向南水平通过解析:小磁针的N极向东偏转,则一定是小磁针所在位置的磁场方向变成偏东方向,因此此处可能有磁体产生的磁场,也可能是电流产生的磁场,所以选项A错误、B正确.电子带负电,电子流自南向北水平通过,在小磁针所处位置产生的磁场向东,选项C正确.答案:BC3.实验室经常使用的电流表是磁电式仪表.这种电流表的构造如图甲所示.蹄形磁铁和铁芯间的磁场是均匀地辐向分布的.若线圈中通以如图乙所示的电流,则下列说法正确的是()A.在量程内指针转至任一角度,线圈平面都跟磁感线平行B.线圈转动时,螺旋弹簧被扭动,阻碍线圈转动C.当线圈在如图乙所示的位置时,b端受到的安培力方向向上D.当线圈在如图乙所示的位置时,安培力的作用使线圈沿顺时针方向转动解析:指针在量程内线圈一定处于磁场之中,由于线圈与铁芯共轴,线圈平面总是与磁感线平行,A正确;电表的调零使得当指针处于“0”刻度时,螺旋弹簧处于自然状态,所以无论线圈向哪一方向转动都会使螺旋弹簧产生阻碍线圈转动的力,B正确;由左手定则知,b端受到的安培力方向向下,安培力将使线圈沿顺时针方向转动,C错误,D正确.答案:ABD4.如图所示,直角坐标系Oxyz处于匀强磁场中,有一条长0.6 m的直导线沿Ox方向通有大小为9 A的电流,受到的安培力沿Oz方向,大小为2.7 N,则该磁场可能的方向和磁感应强度B的最小值为()A.平行于xOy平面,B=0.5 TB.平行于xOy平面,B=1.0 TC.平行于yOz平面,B=0.5 TD.平行于xOz平面,B=1.0 T解析:由左手定则可知,F垂直于I与B决定的平面,且当B与I垂直时,B的值最小.由此可以判断出选项A 、C 正确.答案:AC5.如图所示,三根通电长直导线P 、Q 、R 互相平行且通过正三角形的三个顶点,三条导线中通有大小kIr,I 相等、方向垂直纸面向里的电流.通过直导线产生的磁场的磁感应强度B =为通电导线的电流大小,r 为与通电导线的距离,k 为常量.则通电导线R 受到的磁场力的方向是( )A.垂直R ,指向y 轴负方向B.垂直R ,指向y 轴正方向C.垂直R ,指向x 轴负方向D.垂直R ,指向x 轴正方向解析:安培力的方向与电流方向垂直,P 、Q 在R 处产生的合磁场方向沿x 轴正方向,由左手定则可以判断出R 受到的磁场力方向指向y 轴负方向.答案:A6.如图甲所示,一根重G =0.2 N 、长L =1 m 的金属棒ab ,在其中点弯成60°角,将此通电导体放入匀强磁场中,导体两端a 、b 悬挂于两相同的弹簧下端,当导体中通以I =2 A 的电流时,两根弹簧比原长各缩短Δx =0.01 m.已知匀强磁场的方向水平向外,磁感应强度B =0.4 T ,求:(1)导线中电流的方向.(2)弹簧的劲度系数k .解析:(1)通电后,根据左手定则可判断安培力的方向,F 、F ′的方向各与导线垂直(如图乙所示),而F 、F ′的合力则是竖直向上的,所以导线中电流的流向应为b →a .乙(2)ab 在重力G ,弹簧弹力F 1、F 2,安培力F 、F ′的作用下处于平衡状态,则: F 1+F 2+G =F cos 60°+F ′cos 60°2k Δx +G =2BI ·L 2cos 60° 解得:k =BIL cos 60°-G 2Δx=0.4×2×1×12-0.22×0.01N/m =10 N/m.答案:(1)b →a (2)10 N/m金典练习二十七磁感应强度安培力选择题部分共10小题,每小题6分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.1.如图所示,在平面M内放有一半径为r的半圆形导线,导线中所通的电流为I1,在半圆线圈圆心O处垂直平面M放一长直导线,导线中通以向上的电流I2.已知长直导线在半圆形导线处产生的磁感应强度为B,则半圆形导线所受的安培力的大小是()r B.2BI2r C.πBI1r D.0A.2BI解析:直线电流产生的磁场是一组同心圆,I2为半圆形电流,与磁场方向平行,所以半圆形导线不受安培力.答案:D2.通电矩形导线框abcd与无限长通电直导线MN在同一平面内,电流方向如图所示,ad边与MN平行.关于MN中电流产生的磁场对线框的作用,下列叙述中正确的是()A.线框有两条边所受到的安培力方向相同B.线框有两条边所受到的安培力大小相同C.整个线框有向里收缩的趋势D.若导线MN向左微移,各边受力将变小,但合力不变解析:由直线电流产生磁场的特点可知,与导线距离相等的位置磁感应度大小相等.因此ab与cd边受到的安培力大小相等,但ab受力方向向下,cd受力方向向上,即两者的方向相反.ad受力方向向左,bc受力方向向右,但ad受到的力大于bc受到的力;若MN向左微移,则线框各边所在处磁场均减弱,故各边受力均变小,但ad边所在处减弱更多,故线框所受向左的合力变小.答案:B3.19世纪20年代,以塞贝克为代表的科学家已经认识到:温度差会引起电流.安培考虑到地球自转造成了太阳照射后正面与背面的温度差,从而提出“地球磁场是绕地球的环行电流引起的”的假设.已知磁子午线是地球磁场N极与S极在地球表面的连线,则该假设中的电流方向是A.由西向东垂直磁子午线B.由东向西垂直磁子午线C.由南向北沿磁子午线D.由赤道向两极沿磁子午线解析:因为地磁场N极在地球南极附近,地磁场S极在地球北极附近,故由安培定则可得题中假设的电流方向是由东向西垂直磁子午线.答案:B4.在xOy平面中有一通电直导线ab与Ox、Oy轴相交,导线中的电流方向如图所示.该区域有匀强磁场,通电直导线所受磁场力的方向与Oz轴的正方向相同,该磁场的磁感应强度的方向可能是()A.沿x轴负方向B.沿y轴负方向C.沿z轴正方向D.沿z轴负方向解析:当电流方向与磁场方向不垂直时,可以将磁感应强度进行分解,分解为与电流方向垂直的分量和与电流方向平行的分量.根据左手定则,手心应与磁感应强度垂直电流方向的分量垂直.当磁感应强度的方向为x轴负方向或y轴负方向时,都有与电流垂直的分量,根据左手定则判定,受力方向都沿z轴正方向,如图乙所示.答案:AB5.下列有关磁感线的说法中,正确的是()A.在磁场中存在着一条一条的磁感线B.磁感线是起源于N极,止于S极C.磁感线越密集处磁场越强D.两条磁感线之间的区域不存在磁场解析:磁感线在磁场中实际不存在,是人们为了研究问题方便而引入的假想线,选项A错误.在磁体外部的磁感线从N极出发,止于S极;在磁体内部的磁感线从S极出发,止于N极,选项B错误.磁感线的疏密程度可以反映磁场强弱,选项C正确.磁场存在于磁体周围的整个空间中,选项D错误.答案:C6.图示的装置中,劲度系数较小的金属轻弹簧下端恰好浸到水银面,电源电动势足够大.当闭合开关S后,弹簧将()A.保持静止B.收缩C.变长D.不断上下振动解析:在开关闭合的瞬间,有电流流过弹簧,弹簧可以看成由很多匝环形电流组成,每一匝环形电流相当于一个小的条形磁铁,由右手螺旋定则可以判断出各匝相互吸引.弹簧收缩后脱离水银,弹簧中无电流,各匝不再相互吸引,弹簧恢复原长,又与水银接触;接触,通电,再又重复上述过程.故弹簧不断上下振动.答案:D7.如图甲所示,条形磁铁放在水平桌面上,在其左上方固定一根长直导线,导线与磁铁垂直,给导线通以垂直纸面向里的电流,用F N表示磁铁对桌面的压力,f表示桌面对磁铁的摩擦力,则导线通电后与通电前相比()A.F N减小,f=0B.F N减小,f≠0、方向向左C.F N增大,f=0D.F N增大,f≠0、方向向左解析:解法一画出条形磁铁周围的磁感线,由左手定则可知长直导线的受力方向为左上方向;由牛顿第三定律可知条形磁铁的受力方向为右下方向,如图乙所示.故选项D正确.解法二画出条形磁铁的等效环形电流,如图乙所示.由电流之间安培力方向特点很容易判定这些环形电流受直导线的安培力的合力应向右下方向,选项D正确.答案:D8.在赤道上竖立一避雷针.当一团带负电的乌云经过其正上方时,避雷针发生放电,则地磁场对避雷针的作用力()A.向东B.向西C.向南D.向北解析:作出如图所示的方位图,带负电的云层放电,则避雷针中的电流方向竖直向上,由左手定则判断,地磁场对避雷针的作用力向西.答案:B9.如图甲所示,把一通电导线AB放在蹄形磁铁磁极的正上方,导线可以自由移动.当导线AB中通有图示方向的电流I时,从上往下看,导线的运动情况是()A.按顺时针方向转动,同时下降B.按顺时针方向转动,同时上升C.按逆时针方向转动,同时下降D.按逆时针方向转动,同时上升解析:先采取电流元受力分析法,把直线电流等效为OA、OB两段电流元,如图乙所示.根据左手定则可知,两段电流元所受安培力方向相反(OA电流元受力指向纸面外,OB电流元受力指向纸面里).可见,从上往下看时,导线将逆时针转动.再采取特殊位置分析法,取导线逆时针转过90°的特殊位置来分析,如图丙所示.根据左手定则判断出安培力的方向向下,故导线在逆时针转动的同时,向下运动,所以正确答案为C.答案:C10.如图甲所示,用粗细均匀的电阻丝折成平面三角形框架置于光滑水平面上,三边的长度分别为3L 、4L 和5L ,长度为L 的电阻丝的电阻为r ,框架与一电动势为E 、内阻不计的电源相连接,整个系统处于方向垂直于框架平面、磁感应强度为B 的匀强磁场,则框架受到的安培力的合力为( )A.0B.BqLr,方向b →d C.2BEL r,方向d →b D.12BEL 7r,方向b →d 解析:由题意知,通过ac 边的电流为:I1=E 5r由a →b →c 的电流I 2=E 7r故框架的受力情况如图乙所示.则:Fac =B ·5L ·E 5r =BLE r,方向b →d F ab =3BLE 7r,方向b →c F bc =4BLE 7r,方向b →a由平行四边形定则知,F ab 、F bc 的合力与F ac 同向,大小为5BLE 7r,如图丙所示.故框架受到的安培力的合力为:F =5BLE 7r +BLE r =12BLE 7r,方向b →d . 答案:D非选择题部分共3小题,共40分.11.(13分)图示为等臂电流天平,可以用来测量匀强磁场的磁感应强度.它的右臂挂着匝数n =9的矩形线圈,线圈的水平边长为l ,处于匀强磁场内,磁感应强度的大小为B 、方向与线圈平面垂直.当线圈中通过电流I 时,调节砝码使两臂达到平衡.然后使电流反向、大小不变,这时需要在左盘中增加质量为m 的砝码,才能使两臂再次达到新的平衡.(1)导出用已知量和可测量量n 、m 、l 、I 表达B 的计算式.(2)当l =10.0 cm 、I =0.10 A 、m =7.2 g 时,磁感应强度B 是多大?(取重力加速度g =10 m/s 2)解析:(1)设电流方向未改变时,等臂天平的左盘内砝码的质量为m 1,右盘内砝码的质量为m 2,由平衡条件有:m 1g =m 2g -nBIl电流方向改变之后有:(m 1+m )g =m 2g +nBIl联立两式可得:B =mg 2nIl. (2)将n =9,l =10 cm ,I =0.1 A ,m =7.2 g 代入B =mg 2nIl中得: B =0.4 T.答案:(1)B =mg 2nIl(2)0.4 T12.(13分)如图甲所示,电源的电动势E =2 V ,内阻r =0.5 Ω,两竖直导轨间的距离L =0.2 m ,竖直导轨的电阻可以忽略不计.金属棒的质量m =0.1 kg ,电阻R =0.5 Ω,它与导轨间的动摩擦因数μ=0.4,在纸外一侧垂直靠在两导轨上.为使金属棒不下滑,施一与纸面成30°夹角、与导线垂直且斜向纸里的磁场,则磁感应强度的大小应满足什么条件?(设最大静摩擦力等于滑动摩擦力,取g =10 m/s 2)解析:对金属棒进行受力分析,设磁感应强度为B 1时,金属棒恰好不下滑,此时它的受力情况如图乙所示,有:F cos 30°=F NF sin 30°+f =mgf =μF NF =B 1ILI =E R +r解得:B 1=3.0 T设磁感应强度为B 2时,金属棒恰好不上滑,此时它的受力情况如图丙所示.同理有:B 2IL sin 30°=μB 2IL cos 30°+mg乙 丙解得:B 2=16.3 T故磁感应强度B 的大小应满足:3.0 T ≤B ≤16.3 T.答案:3.0 T ≤B ≤16.3 T13.(14分)图示为导轨式电磁炮实验装置示意图.两根平行长直金属导轨沿水平方向固定,其间安放有一金属滑块(即实验用弹丸).滑块可沿导轨无摩擦滑行,且始终与导轨保持良好接触.电源提供的强大电流从一根导轨流入,经过滑块,再从另一导轨流回电源.滑块被导轨中的电流形成的磁场推动而发射.在发射过程中,该磁场在滑块所在位置始终可以简化为匀强磁场,方向垂直于纸面,其强度与电流的关系为B =kI ,比例常量k =2.5×10-6 T/A.已知两导轨内侧间距l =1.5 cm ,滑块的质量m =30 g ,滑块沿导轨滑行5 m 后获得的发射速度v =3.0 km/s(此过程视为匀加速运动).(1)求发射过程中电源提供的电流.(2)若电源输出的能量有4%转换为滑块的动能,则发射过程中电源的输出功率和输出电压各是多大? 解析:(1)由匀加速直线运动公式得:a =v 22s=9×105 m/s 2 由安培力公式和牛顿第二定律,有:F =BIl =kI 2l =ma因此I =ma kl=8.5×105 A. (2)滑块获得的动能是电源输出能量的4%,即:P ·Δt ×4%=12mv 2 发射过程中电源供电时间为:Δt =v a =13×10-2 s 所需的电源输出功率为:P =12mv 2Δt ×4%=1.0×109 W 由功率P =IU ,解得输出电压为:U =P I=1.2×103 V. 答案:(1)8.5×105 A (2)1.0×109 W 1.2×103 V。