当前位置:文档之家› 人教版高中化学选修三全册教案(最新原创)

人教版高中化学选修三全册教案(最新原创)

3、卢瑟福原子模型(1911年)英国物理学家卢瑟福根据α—粒子散射实验提出:在原子的中心有一个带正电荷的核,它的质量几乎等于原子的全部质量,电子在它的周围沿着不同的轨道运转,就象行星环绕太阳运转一样。

(电子绕核旋转的原子结构模型)4、玻尔原子模型(1913年)丹麦物理学家玻尔通过光谱研究提出电子在核外空间的一定轨道内绕核做高速圆周运动的理论。

(核外电子分层排布的原子结构模型)5、电子云模型(1927年—1935年)又称现代物质结构学说。

奥地利物理学家薛定谔等人以量子力学为基础,根据微观世界的波粒二象性规律,提出用量子力学的方法描述核外电子运动,即用电子云描述核外电子的运动。

随着现代科学技术的发展,科学家已经能利用电子显微镜和扫描隧道显微镜来拍摄表示原子图像的照片,并且能在晶体硅表面上用探针对硅原子进行“搬迁”。

[回忆复习] 原子的组成结构核外电子是怎样排布的?[复习讲述]核外电子排布的一般规律——分层排布(1)核外电子总是尽量先排布在能量较低的电子层,然后由里向外,依次排布在能量逐步升高的电子层(能量最低原理)。

(2)原子核外各电子层最多容纳2n2个电子。

(3)原于最外层电子数目不能超过8个(K层为最外层时不能超过2个电子)。

(4)次外层电子数目不能超过18个(K层为次外层时不能超过2个),倒数第三层电子数目不能超过32个。

(说明:以上规律是互相联系的,不能孤立地理解。

)二、能层与能级[说明、板书]能层:________________________________________________离核距离:()()能量高低:()()能层:符号:最多电子数:[介绍]多电子原子中,同一能级的电子,能量也可能不同,还可以把它们分成能级,就好比能层是楼层,能级是楼梯的阶梯。

[新授、板书]能级K L M N 0 能层1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p ……..能级……..最多电子数[讨论]1. 不同的能层分别有多少个能级,与能层的序数n存在什么关系?2. 如何表述各能层(电子层)的各能级?3. s、p、d、f能级所容纳的电子数怎样?教学回顾:知识目标第一章原子结构与性质第一节原子结构:(第三课时)能力目标1.知道原子核外电子的排布遵循能量最低原理2.知道原子的基态和激发态的涵义3.初步知道原子核外电子的跃迁及吸收或发射光谱,了解其简单应用4.了解原子核外电子的运动状态,电子云和原子轨道的涵义5.了解泡利原理、洪特规则及其应用重点1.知道原子核外电子的排布遵循能量最低原理、泡利原理、洪特规则2.书写轨道排布式难点1.知道原子核外电子的排布遵循能量最低原理、泡利原理、洪特规则2.基态、激发态与光谱教学过程备注四、基态、激发态、光谱1、基态:能量状态。

如处于最低能量状态的原子称为基态原子。

2、激发态:能量状态(相对基态而言)。

如基态原子的电子吸收能量后,电子跃迁至较高能级成为激发态原子。

3、基态与激发态相互转化的能量转化的关系()能量基态原子激发态原子()能量4、光谱:不同元素的原子发生跃迁时会能量(基态→激发态)和能量(基态→激发态),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

利用光谱分析可以发现新元素或利用特征谱线鉴定元素。

如科学家们通过太阳光谱的分析发现了稀有气体氦,化学研究中利用光谱分析检测一些物质的存在与含量。

五、电子云与原子轨道核外电子运动的特点:①质量极小②运动空间极小③极高速运动1、电子云:电子在原子核外空间一定范围内出现的,象一团带负电的云雾笼罩在原子周围。

电子云是核外电子运动状态的形象化描述。

[思考]:1s电子云,许多黑点是否代表电子?2、原子轨道——不同能级上的电子出现概率约为的电子云空间轮廓图[思考]:原子轨道与宏观物体运动的轨道是否相同?s 电子的原子轨道呈 对称,每个s 能级能级各有 个原子轨道,能层序数越大,s 原子轨道的半径越大。

; p 电子的原子轨道呈 形,,每个p 能级有 个轨道,它们互相垂直,分别以p x 、p y 、p z 为符号。

p 原子轨道的平均半径也随能层序数增大而增大。

d 能级各有 个原子轨道;f 能级各有 个原子轨道。

[小结]:s 、p 、d 、f ……可容纳的电子数依次是1、3、5、7……的两倍,此处的1、3、5、7……应为s 、p 、d 、f……的轨道数。

据此分析每个轨道最多容纳 各电子。

3、轨道表示式:用“□”表示轨道,用“↑”或“↓”表示容纳的电子。

1s 1s如:1H 2He 1s 2s 1s 2s 2p3Li 6C 注意:、ns 能级各有1个轨道,np 能级各有3个轨道,nd 能级各有5个轨道,nf 能级各有7个轨道。

而每个轨道里最多能容纳2个电子,通常称为电子对,用方向相反的箭头“↑↓”来表示。

“↑” “↓”表示自选方向相反。

[练习]:写出下列原子的轨道表示式。

7N 8O13Al 18Ar26Fe 27Co (1)泡利原理:每个原子轨道里最多只能容纳 个电子,且自旋方向 。

也称泡利不相容原理,任何一个原子里绝不会出现运动状态完全相同的电子。

能层 运动状态包含 能级轨道↓↑↑ ↓↑ ↑ ↑ ↓↑ ↓↑(3)意义:元素的电负性越大,表示其原子在化合物中吸引电子的能力越强;反之,电负性越小,相应原子在化合物中吸引电子的能力越弱。

[讲]鲍林利用实验数据进行了理论计算,以氟的电负性为4.0和锂的电负性为1。

0作为相对标准,得出了各元素的电负性(稀有气体未计),如图l—23所示。

[板书](4) 电负性大小的标准:以F的电负性为4.0和Li的电负性为1.0作为相对标准。

[思考与交流]同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧的非金属性与氯的非金属性哪个强?[讲]金属元素越容易失电子,对键合电子的吸引能力越小,电负性越小,其金属性越强;非金属元素越容易得电子,对键合电子的吸引能力越大,电负性越大,其非金属性越强;故可以用电负性来度量金属性与非金属性的强弱。

周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。

[讲]同周期元素从左往右,电负性逐渐增大,表明金属性逐渐减弱,非金属性逐渐增强。

同主族元素从上往下,电负性逐渐减小,表明元素的金属性逐渐减弱,非金属性逐渐增强。

[板书](5) 元素电负性的周期性变化○1金属元素的电负性较小,非金属元素的电负性较大。

○2同周期从左到右,元素的电负性递增;同主族,自上而下,元素的电负性递减,对副族而言,同族元素的电负性也大体呈现出这种变化趋势。

[讲]电负性大的元素集中在元素周期表的右上角,电负性小的元素位于元素周期表的左下角。

[科学探究]根据数据制作的第三周期元素的电负性变化图,请用类似的方法制作IA、VIIA 元素的电负性变化图。

电负性的周期性变化示例[讲]元素的电负性用于判断一种元素是金属元素还是非金属元素,以及元素的活泼性。

通常,电负性小于2的元素,大部分是金属元素;电负性大于2的元素,大部分是非金属元素。

非金属元素的电负性越大,非金属元素越活泼;金属元素的电负性越小,金属元素越活泼。

例如,氟的电负性为4,是最强的非金属元素;钫的电负性为0.7,是最强的金属元素,[板书](6) 元素电负性的应用○1元素的电负性与元素的金属性和非金属性的关系[讲]金属的电负性一般都小于1.8,非金属的电负性一般都大于1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性在1.8左右,它们既有金属性,又有非金属性。

[讲]利用电负性可以判断化合物中元素化合价的正负;电负性大的元素易呈现负价,电负性小的元素易呈现正价。

[板书]○2电负性与化合价的关系[讲]电负性数值的大小能够衡量元素在化合物中吸引电子能力的大小。

电负性数值小的元素在化合物中吸引电子的能力弱,元素的化合价为正值;电负性数值大的元素在化合物中吸引电子的能力强,元素的化合价为负价[板书]③判断化学键的类型[讲]一般电负性差值大的元素原子间形成的主要是离子键,电负性差值小于1.7或相同的非金属原子之间形成的主要是共价键;当电负性差值为零时,通常形成非极性键,不为零时易形成极性键。

当电负性差值大于1.7,形成的是离子键[点击试题]已知元素的电负性和元素的化合价等一样,也是元素的一种基本性质。

下面给出14种元素的电负性:元素Al B Be C Cl F Li Mg N Na O P S Si 电负性 1.5 2.0 1.5 2.5 2.8 4.0 1.0 1.2 3.0 0.9 3.5 2.1 2.5 1.7 已知:两成键元素间电负性差值大于1.7 时,形成离子键,两成键元素间电负性差值小于1.7时,形成共价键。

①根据表中给出的数据,可推知元素的电负性具有的变化规律是。

②.判断下列物质是离子化合物还是共价化合物?Mg3N2 BeCl2 AlCl3 SiC解析:元素的电负性是元素的性质,随原子序数的递增呈周期性变化。

据已知条件及上表中数值:Mg3N2电负性差值为1.8,大于1.7,形成离子键,为离子化合物;BeCl2 AlCl3 SiC 电负性差值分别为1.3、1.3、0.8,均小于1.7,形成共价键,为共价化合物。

答案:1.随着原子序数的递增,元素的电负性与原子半径一样呈周期性变化。

2.Mg3N2;离子化合物。

SiC,BeCl2、AlCl3均为共价化合物。

[板书]○4对角线规则:元素周期中处于对角线位置的元素电负性数值相近,性质相似。

[科学探究]在元素周期表中,某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”。

查阅资料,比较锂和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱,说明对角线规则,并用这些元素的电负性解释对角线规则。

[讲]Li、Mg在空气中燃烧产物分别为Li2O、MgO,Be(OH)2、Al(OH)3均为两性氢氧化物,硼和硅的含氧酸均为弱酸,由此可以看出对角线规则的合理性。

Li、Mg的电负性分别为1.0、1.2,Be、Al电负性均为1.5,B、Si的电负性分别为2.0、1.8数值相差不大,故性质相似.)[讲]除此之外,我们还要注意电离能和电负性间的关系。

通常情况下,第一电离能大的主族元素电负性大,但IIA族,VA族元素原子的价电子排布分别为ns2,ns2np3,为全满和半满结构,这两族元素原子第一电离能反常大。

[小结]原子半径、电离能、电负性的周期性变化规律:在元素周期表中同周期元素从左到右,原子半径逐渐减小,第一电离能逐渐增大(趋势),电负性逐渐增大。

在元素周期表中同主族从上到下原子半径逐渐增大,第一电离能逐渐减小,电负性逐渐减小。

Na的I1,比I2小很多,电离能差值很大,说明失去第一个电子比失去第二电子容易得多,所以Na容易失去一个电子形成+1价离子;Mg的I1和I2相差不多,而I2比I3小很多,所以Mg容易失去两个电子形成十2价离子;Al的I1、I2、I3相差不多,而I3比I4小很多,所以A1容易失去三个电子形成+3价离子。

相关主题