当前位置:文档之家› 基与维数的几种求法

基与维数的几种求法

线性空间基和维数的求法方法一 根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有n 个向量n αα,,1 满足:(1)n ααα,2,1 线性无关。

(2)V 中任一向量α总可以由n ααα,,21, 线性表示。

那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为dim v n =,并称n ααα,,2,1 为线性空间V 的一组基。

如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。

例1 设{}0V X AX ==,A 为数域P 上m n ⨯矩阵,X 为数域P 上n 维向量,求V 的维数和一组基。

解 设矩阵A 的秩为r ,则齐次线性方程组0AX =的任一基础解系都是V 的基,且V 的维数为n r -。

例2 数域P 上全体形如0a a b ⎛⎫⎪-⎝⎭的二阶方阵,对矩阵的加法及数与矩阵的乘法所组成的线性空间,求此空间的维数和一组基。

解 易证0100,1001⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭为线性空间0,a V a b p a b ⎧⎫⎛⎫=∈⎨⎬ ⎪-⎝⎭⎩⎭|的一组线性无关的向量组,且对V 中任一元素0a a b ⎛⎫ ⎪-⎝⎭有00100+1001a a b a b ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 按定义0100,1001⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭为V 的一组基,V 的维数为2。

方法二 在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。

例3 假定[]n R x 是一切次数小于n 的实系数多项式添上零多项式所形成的线性空间,证明:()()()211,1,1,,1n x x x ----构成[]n R x 的基。

证明 考察()()1121110n n k k x k x -⋅+-++-=由1n x-的系数为0得0n k =,并代入上式可得2n x -的系数10n k -=依此类推便有110n n k k k -====,故()()11,1,,1n x x ---线性无关又[]nR x 的维数为n ,于是()()11,1,,1n x x ---为[]nR x 的基。

方法三 利用定理:数域p 上两个有限维线性空间同构的充分必要条件是它们有相同的维数。

例4 设0110A -⎛⎫=⎪⎝⎭,证明:由实数域上的矩阵A 的全体实系数多项式()f A 组成的空间()0110V f A A ⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭|与复数域C 作为实数域R 上的线性空间{}'V a bi R =+∈|a,b 同构,并非求它们的维数。

证明 V 中任一多项式可记为()()=,,f A aE bA a b R +∈,建立'V 到V 的如下映射()()11111111:,a bi f A a E b A a b R σα=+→=+∈易证σ是'V 到V 上的单射,满射即一一映射。

再设222,a b i α=+ 22,,a b R K R ∈∈,则有()()()()()()()121212121212a a b b i a a E b b A σαασσασα+=+++=+++=+⎡⎤⎣⎦()()()111111k ka kbi ka E ka A k x σασσ=+=+=故σ是'V 到V 的同构映射,所以V 到'V 同构 另外,易证'V 的一个基为1,i ,故'dim 2V ='V Vdim 2V ∴=方法四 利用以下结论确定空间的基: 设12,,,n ααα与12,,,n βββ是n 维线性空间V 中两组向量,已知12,,,n βββ可由12,,,n ααα线性表出:11112121n n a a a βααα=+++21212222n n a a a βααα=+++ 1122n n n nn n a a a βααα=+++令111212122212n n n n nn a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭如果12,,,n ααα为V 的一组基,那么当且仅当A 可逆时,12,,,n βββ也是V 的一组基。

例5 已知231,,,x x x 是[]4p x 的一组基,证明()()231,1,1,1x x x +++也是[]4p x 的一组基。

证明 因为23111000x x x =⋅+⋅+⋅+⋅ 23111100x x x x +=⋅+⋅+⋅+⋅()223111210x x x x +=⋅+⋅+⋅+⋅ ()323111331x x x x +=⋅+⋅+⋅+⋅且11110123000120001A =≠所以()()231,1,1,1x x x +++也为[]4p x 的一组基。

方法五 如果空间V 中一向量组与V 中一组基等价,则此向量组一定为此空间的一组基。

例6 设[]2R x 表示次数不超过2的一切实系数一元多项式添上零多项式所构成的线性空间的一组基,证明22,,1x x x x x +-+为这空间的一组基。

证明 ()()()2212310k x x k x x k x ++-++=则121233000k k k k k k +=⎧⎪-+=⎨⎪=⎩解得3210k k k ===于是22,,1x x x x x +-+线性无关,它们皆可由2,,1x x 线性表示,因此22,,1x x x x x +-+与2,,1x x 等价,从而[]2R x 中任意多项式皆可由22,,1x x x x x +-+线性表示,故22,,1x x x x x +-+为[]2R x 的基。

方法六 利用下面两个定理:定理一:对矩阵施行行初等变换和列变换,不改变矩阵列向量间的线性关系。

定理二:任何一个m n ⨯矩阵A ,总可以通过行初等变换和列变换它为标准阶梯矩阵:00r I B ⎛⎫⎪⎝⎭,其中r I 表示r 阶单位矩阵。

依据这两个定理,我们可以很方便地求出12V V 的一个基,从而确定了维数。

例7 设()()112212,,,V L V L ααββ==是数域F 上四维线性空间的子空间,且()()()()12121,2,1,0,1,1,1,1;2,1,0,1,1,1,3,7.ααββ==-=-=-求12V V 的一个基与维数。

解 若12r V V ∈,则存在1212,,,x x y y F --∈,使11221122r x x y y ααββ=+=-- (1)即有112211220x x y y ααββ+++= (2)若1212,,,ααββ线性无关,(2)仅当2120x x y y ====时成立 那么12V V 是零子空间,因而没有基,此时维数为0,12V V +是直和若存在不全为零的数1212,,,x x y y 使(2)成立,则12V V 有可能是非零子空间若为非零子空间,由(1)便可得到基向量r 。

以1212,,,ααββ为列向量作矩阵A ,经行初等变换将A 化为标准阶梯形矩阵A 。

11211001211101041103001301170000A A --⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=−−−−→= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭行初等变换212143βααβ=-++()1212435,2,3,4r ααββ∴=-+=-+=-是12V V 的一个基 ()12dim 1V V =同时知,12,αα是1V 的一个基,1dim 2V =12,ββ是2V 的一个基,2dim 2V =1212,,,ααββ是12V V +的一个基,()()12dim =3V V A +=秩方法七 在线性空间V 中任取一向量α,将其表成线性空间V 一线性无关向量组的线性组合的形式,必要的话需说明向量组是线性无关的。

这一线性无关向量组就是我们要找的基。

例8 求112()V L αα=,与212()V L ββ=,的交的基和维数。

设12(1,2,1,0)(11,1,1)αα=⎧⎨=-⎩,,12(21,0,1)(11,3,7)ββ=-⎧⎨=-⎩,,解 任取12V V α∈,则11122V x x αααα∈=+,,且21122V y y ααββ∈=+,,1122112x x y y αααββ=+=+(注:此时α虽然已表成一线性组合的形式,但它仅仅是在1V 、2V 中的表示,并非本题所求,即要在空间21V V 中将α线性表出)11221120x x y y ααββ∴+--=,求1212,,,x x y y121212121222122020300x x y y x x y y x x y x y y ---=⎧⎪+-+=⎪⎨+-=⎪⎪--=⎩ 7 解得1212(,,,)(,4,3,)x x y y k k k k =--1212(4)(3)(5,2,3,4)k k k αααββ∴=-=-+=-故12V V 是一维的,基是(5,2,3,4)-易知(5,2,3,4)-是非零向量,是线性无关的。

方法八 按维数公式求子空间的交与和的维数和基维数公式:如果1,2V V 是有限维线性空间V 的两个子空间,那么()()()()121212dim dim dim dim V V V V V V +=++例9 已知()()123,1,2,1,0,1,0,2αα=-=()()121,0,1,3,2,3,1,6ββ==--求由向量12,αα生成的4p 的子空间()112,V L αα=与向量1,2ββ生成的子空间()212,V L ββ=的交与和空间的维数的一组基。

解 因为()121212,,,V V L ααββ+=,对以1212,,,ααββ为列的矩阵施行行初等变换:30120000110311032011001112360003A B ⎛⎫⎛⎫ ⎪⎪----⎪ ⎪=→= ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭秩A =秩3B =,所以12V V +的维数是3且1212,,,ααββ为极大线性无关组,故它们是12V V +的一组基。

又由12,αα线性无关知1V 的维数为2,同理2V 的维数也为2,由维数公式知12V V 的维数为()2231+-=。

从矩阵B 易知12122ββαα+=-,故()123,3,2,3ββ+=--是12,V V 公有的非零向量,所以它是交空间12V V 的一组基。

方法九 由替换定理确定交空间的维数。

替换定理:设向量组12,,,r ααα线性无关,并且12,,,r ααα可由向量组12,,,s βββ线性表出,那么()1r s ≤()2必要时可适当对12,,,s βββ中的向量重新编号,使得用12,,,r ααα替换12,,,r βββ后所得到的向量组121,,,,,,r r s αααββ+与向量组12,,,s βββ等价。

特别,当r s =时,向量组12,,,s ααα与向量组12,,,s βββ等价。

相关主题