1 故障类型电力系统的线路故障总的来说可以分为两大类:横向故障和纵向故障。
横向故障是指各种类型的短路,包括三相短路、两相短路、单相接地短路及两相接地短路。
三相短路时,由于被短路的三相阻抗相等,因此,三相电流和电压仍是对称的,又称为对称短路。
其余几种种类型的短路,因系统的三相对称结构遭到破坏,网络中的三相电压、电流不再对称,故称为不对称短路。
运行经验表明,电力系统各种短路故障中,单相短路占大多数,约为总短路故障数的65%,三相短路只占5%~10%。
三相短路故障发生的几率虽然最小,但故障产生的后果最为严重,必须引起足够的重视。
此外,三相对称短路计算又是一切不对称短路计算的基础。
纵向故障主要是指各种类型的断线故障,包括单相断线、两相断线和三相断线。
2 对称分量法和克拉克变换2.1 对称分量变换三相电路中,任意一组不对称的三相相量都可以分解为三组三相对称的分量,这就是所谓的“三相相量对称分量法”。
对称分量法是将不对称的三相电流和电压各自分解为三组对称分量,它们是:(1) 正序分量:三相正序分量的大小相等,相位彼此相差2pi/3,相序与系统正常运行方式下的相同;(2) 负序分量:三相负序分量的大小相等,相位彼此相差2pi/3,相序与正序相反; (3) 零序分量:三相零序分量的大小相等,相位相同。
为了清楚起见,除了仍按习惯用下标a 、b 和c 表示三个相分量外,以后用下标1、2、0分别表示正序、负序和零序分量。
设.a F 、.b F 、.c F 分别代表a 、b 、c 三相不对称的电压或电流相量,.1a F 、.2a F 、.0a F 分别表示a 相的正序、负序和零序分量;.1b F 、.2b F 、.0b F 和.1c F 、.2c F 、.0c F 分别表示b 相和c 相的正、负、零序分量。
通常选择a 相作为基准相,不对称的三相相量与其对称分量之间的关系为:..21..22..01113111a a a b a c F F a a a a F F F F ⎛⎫⎛⎫ ⎪⎛⎫ ⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭式中,运算子120j a e =,2240j ae =,且有31a =,2310a a ++=;我们令2211111a a S a a ⎛⎫⎪= ⎪ ⎪⎝⎭称为对称分量变换矩阵。
我们有:120abc F SF =它的逆12211111S a a a a -⎛⎫ ⎪= ⎪ ⎪⎝⎭称为对称分量反变换矩阵。
因此有:1120abc F S F -=由以上两式可以得到以下结论,桑不对称的相量可以唯一地分解为三组对称的相量(简称对称分量)。
有三组对称分量可以进行合成而得到惟一的三个不对称相量。
由三相分量到序分量的变换,可知电力系统正常对称运行或者发生对称三相短路时系统中的负序和零序分量为零。
系统在不对称运行或者发生不对称短路时,系统中才会有负序和零序分量。
另外,由零序分量的变换可知道,如果系统是不接地系统,即a ,b ,c 三相的电流之和在任意时刻均为零,可知不接地系统在发生不对称的非接地故障时故障电流的零序分量为零。
2.2 克拉克变换克拉克变换是由克拉克(E.Clarke )提出的两相变换,它是一种根据双反应原理进行的变换。
用正交矩阵表示这种变换关系时,有0abc f Cf αβ=;10abc f C f αβ-=其中211103111C ⎛⎫-- = ⎪⎝⎭;1101112112C -⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪⎪-- ⎪⎝⎭特别的,当三相对称时有以下关系(以电压为例,电流也如此):..a V V α=;..a V j V β=-;.00V =2.3 对称分量法与克拉克变换的关系对于一组三相分量,可以通过对称分量法分解为对应的正序、负序、零序分量,也可以通过克拉克变换变换成α相分量、β相分量和0相分量。
那么我们可以以系统运行时的电压电流参数为桥梁,将两种变换联系起来,实现两种变换也可以互相转换。
..21..22..001011111132111112V V a a aa V V V V αβ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪--⎝⎭ ⎪⎝⎭⎝⎭...1102211022001j V j V V αβ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭可以看出,对称分量中的零序分量与克拉克变换后的0相分量相等。
其它两分量的关系为:...11()2V V j V βα=+...21()2V V j V βα=- 和...21...21()V V V V j V V αβ=+=--3 克拉克变换和对称分量法在电力系统故障分析中的应用3.1 克拉克变换在故障分析中的应用概述由对称分量法正、负分量与克拉克变换α、β分量的关系,以及系统三相对称运行时有:..a V V α=由叠加定理可推导出:.......(0)(0)12221111()()2z z V VV V VI I α+=++=-+..1221()2z z I I ---.....(0)121222111...(0)12121()()()2222z z z z VI I j j I I z z z z V I j I αβ+-=-+---+-=--同理,可以推导出:....(0)1212122z z z z V j VjI I βαβ-+=-++考虑到电力系统中一般都能满足正、负序阻抗相等的条件,即12z z =,则以上两式可以简化为:...(0)11...(0)11..000V Vz I V j Vz I V z I ααββ=-=--=-上式也就是故障口的电压方程。
边界条件的建立要根据短路类型来确定。
将电压和电流的克拉克变换代入确定的边界条件,得到变换后电压分量和电流分量的边界制约关系。
3.2 基于对称分量法的复杂故障分析首先要说明的是,在一个三相对称的元件中(例如线路、变压器和发电机),入股流过三相正序电流,则在元件上的三相电压降也是正序的,这一点从物理意义上是很容易理解的。
同样地,如果路过三相负序电流或零序电流,则元件上的三相电压降也是负序的或零序的。
这也就是说,对于三相对称元件,各序分量是独立的,即正序电压只与正序电流有关,负序、零序也如此。
当系统发生简单故障,即故障点只有一个时可通过建立单端口网络来分析故障点电压电流情况。
由此可推论,当系统发生多点故障时可以通过建立多端口网络来分析。
在发生短路的故障点,引入与故障电流相等的故障电流源,向系统注入故障电流。
故障电流的注入将影响系统中其它节点的电压、电流分布。
贯穿整个分析过程的是叠加定理。
通过故障前与故障后注入故障电流相叠加得到系统故障点在发生故障后稳态运行情况。
有3种常用的描述端口网络的方程:阻抗型参数方程、导纳型参数方程和混合型参数方程。
这里仅介绍用阻抗型参数方程分析复杂故障。
在复杂故障中,出现双重故障的可能性最大。
双重故障可以是串联型与串联型故障的复合、并联型故障的复合以及串联型与并联型故障的复合。
它们的分析方法虽各不相同,但其实质都是通用复合序网和两端口网络方程的综合应用。
正如前面所述,电力系统发生多点故障时,利用叠加定理,将故障前故障点运行状况与将系统电源置零仅由故障电流作用时的故障点运行状况相叠加。
我们假设故障前系统空载,此时,三相对称,系统中不存在负序和零序分量。
我们仅以双重故障为例,设系统中有两个故障点k 和f ,k 点发生三相对称接地短路(....0,0,ka ka kb kb k k V z I V z I -=-= ..0kc kc k V z I -=,k z 为短路过渡电阻)。
节点f 发生b 、c 相金属性相间短路(.....,0,0fa fb fc fb fc I V V I I ==+=)。
对故障点k ,有节点电压方程:(0)....(1)(1)(1)(1)(1)k k k f kk kf V V z I z I =--○1 ...(2)(2)(2)(2)(2)k k f kk kf V z I z I =--○2 ...(0)(0)(0)(0)(0)k k f kk kf V z I z I =--○3 故障点k 是三相对称短路,有故障点三相故障电压为短路电流流经过渡电阻后的压降,因此故障点k 的边界条件为:..0ka ka k V z I -=;..0kb kb k V z I -=;..0kc kc k V z I -=对应的序分量形式为(化简后):..(1)(1)k k k V z I =○4 ..(2)(2)k k k V z I =○5 ..(0)(0)k k k V z I =○6 同样地,对于节点f 有电压方程为:(0)....(1)f (1)(1)(1)(1)f f k ff fk V V z I z I =--○7 ...(2)f (2)(2)(2)(2)f k ff fkV z I z I =--○8 ...(0)f (0)(0)(0)(0)f k ff fk V z I z I =--○9 故障点f 为两相金属短路,有故障点a 相电流为0,b 、c 相电压相等,电流之和为0,因此故障点f 的边界条件为:.0fa I =;..,fb fc V V =;..0fb fc I I +=对应的序分量形式为(化简后):.(0)0f I = ○10 ..(1)(2)0f f I I += ○11 ..(1)(2)f f V V = ○12 由以上方程可以得到双重故障的复合序网为:图1 双重故障的复合序网由上面的分析可以得出:电压方程确定了复合序网网络内的电势和内部序阻抗的大小。
网络内的电势就是短路前的端口电压,由于故障前系统是对称运行,故负序和零序电势为零。
端口电压方程则决定了复合序网端口外部序阻抗的大小以及端口之间的连接方式。
由○1○4解得:(0)...(1)(1)(1)(1)()k k f kk k kf V z z I z I =++○13 由○2○5○11解得:.(2)(2)(2)kf k k kk z I z z =+○14把○14代入○8有:..(2)(2)(1)(2)(2)(2)()fk kf f f ff k kk z z V z I z z =-+○15 由○12可知,式○7和○15相等,联立两式得: (0)..(1)(1)(1)(2)(fk fk ff ff V z I z z =++.(2)(2)(1)(2))fk kf f k kk z z I z z -+○16 由○13和○16得: 1.(1)(1)(1)(2)(2).(1)(1)(2)(1)(2)kk k kf k fk kf fk ff ff f k kk z z z I z z z z z I z z -⎛⎫+⎛⎫⎪⎪= ⎪ ⎪+-⎪ ⎪ ⎪+⎝⎭⎝⎭(0).(0).k f V V ⎛⎫⎪ ⎪ ⎪⎝⎭。